Skip to main content
Log in

The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation inValonia utricularis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The pressure-dependence of the hydraulic conductivity and of electrical membrane parameters inValonia utricularis are determined over a turgor pressure range of 4 to 4.5 atm by means of a direct measurement of the hydrostatic pressure inside the cell. The dependence of the hydraulic conductivity on pressure is calculated from the volume flows and subsequent changes in the turgor induced by both osmotic and hydrostatic gradients.L p is independent of pressure above 1 atm and equal under osmotic and hydrostatic conditions. Polarity of water movement is not observed. At pressures below 1 atm,L p increases up to 10 times on approaching the point of plasmolysis. This increase is discussed in terms of membrane folding and of the stretching of pores within the membrane. In contrast to this finding the membrane resistance (normally 300 to 500 Ω cm2) increases markedly in response to higher pressures and reaches a maximum value of 1500 Ω cm2 at about 2 atm. Further increase of the hydrostatic pressure reduces the membrane resistance again until the original value is reached at 3 to 4 atm. In the range of the maximum resistance the membrane potential (0 to +15 mV at 1 atm) drops by 10 to 40 mV. At low pressures the membrane potential drops in the dark, while at high pressures and reduced membrane potential an increase of the p.d. is observed. From these results it is suggested that the electrogenic potassium pump postulated by Gutknecht is pressure-dependent and causes the observed changes in membrane resistance. According to this hypothesis, with increasing pressure the potassium influx would be reduced and the potassium efflux accelerated. This means that the electrogenic pump reverses its direction at high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry, P. H. 1970. Volume flows and pressure changes during an action potential in cells ofChara australis. II. Theoretical considerations.J. Membrane Biol. 3:335

    Google Scholar 

  2. Barry, P. H., Hope, A. B. 1969. Electroosmosis in Membranes: Effects of unstirred layers and transport numbers, Part I. Theory.Biophys. J. 9:700

    Google Scholar 

  3. Barry, P. H., Hope, A. B. 1969. Electroosmosis in Membranes: Effects of unstirred layers and transport numbers, Part II. Experimental.Biophys. J. 9:729

    Google Scholar 

  4. Ben-Amotz, A., Avron, M. 1973. The role of glycerol in the osmotic regulation of the halophilic algaDunaliella parva.Plant Physiol. 51:875

    Google Scholar 

  5. Burton, A. C. 1970. The stretching of pores in a membrane.In: Permeability and Function of Biological Membranes. L. Bolis, A. Katschalsky, R. D. Keynes, W. R. Loewenstein, and B. A. Pethica, editors. Part I, p. 1. North-Holland Publishing Company, Amsterdam and London

    Google Scholar 

  6. Dainty, J. 1969. The water relations of plants.In: The Physiology of Plant Growth and Development. M. B. Wilkins, editor. p. 421. MacGraw-Hill, London

    Google Scholar 

  7. Fensom, D. S., Dainty, J. 1963. Electroosmosis inNitella.Canad. J. Bot. 41:685

    Google Scholar 

  8. Fensom, D. S., Wanless, J. R. 1967. Further studies of electroosmosis inNitella in relation to pores in membranes.J. Exp. Bot. 18:563

    Google Scholar 

  9. Frenkel, S. Y. A., Kukhareva, L. V., Ginzburg, B. M., Gaspanyan, K. A., Vorobev, Y. J. 1965. Effect on load on the order-disorder transition in native collagen fibres.Biofizika 10:735

    Google Scholar 

  10. Guillard, R. R. L. 1962. Salt and osmotic balance.In: Physiology and Biochemistry of Algae. R. A. Lewin, editor. p. 529. Academic Press Inc., New York, Amsterdam

    Google Scholar 

  11. Gutknecht, J. 1966. Sodium, potassium and chloride transport and membrane potentials inValonia ventricosa.Biol. Bull., Woods Hole. 130:331

    Google Scholar 

  12. Gutknecht, J. 1967. Ion fluxes and short-circuit current in internally perfused cells ofValonia ventricosa.J. Gen. Physiol. 50:1821

    Google Scholar 

  13. Gutknecht, J. 1967. Membranes ofValonia ventricosa: Apparent absence of water-filled pores.Science 158:787

    Google Scholar 

  14. Gutknecht, J. 1968. Salt transport inValonia: Inhibition of potassium uptake by small hydrostatic pressure.Science 160:68

    Google Scholar 

  15. Katchalsky, A., Curran, P. F. 1965. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  16. Kauss, H. 1969. Osmoregulation mit α-Galaktosylglyzeriden bei Ochromonas und Rotalgen.Ber. Dtsch. Bot. Ges. 82:115

    Google Scholar 

  17. Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes.Biochim. Biophys. Acta 27:229

    Google Scholar 

  18. Kesseler, H. 1964. Die Bedeutung einiger anorganischer Komponenten des Seewassers für die Turgorregulation vonChaetomorpha linum (Cladophorales).Helgoländer Wiss. Meeresunters. 10:73

    Google Scholar 

  19. Philip, J. R. 1958. The osmotic cell, solute diffusibility, and the plant water economy.Plant Physiol. 33:264

    Google Scholar 

  20. Richardson, I. W., Ličko, V., Bartoli, E. 1973. The nature of passive flows through tightly folded membranes.J. Membrane Biol. 11:293

    Google Scholar 

  21. Schobert, B., Untner, K., Kauss, H. 1972. Isofloridosid und die Osmoregulation bei Ochromonas malhamensis.Z. Pflanzenphysiol. 67:385

    Google Scholar 

  22. Stadelmann, E. 1966. Evaluation of turgidity, plasmolysis and deplasmolysis of plant cells.In: Methods in Cell Physiology. D. M. Prescott, editor. Vol. II, p. 143. Academic Press Inc., New York and London

    Google Scholar 

  23. Steudle, E., Zimmermann, U. 1971. Hydraulische Leitfähigkeit vonValonia utricularis.Z. Naturf. 26:1302

    Google Scholar 

  24. Steudle, E., Zimmermann, U. 1971. Zellturgor und selektiver Ionentransport beiChaetomorpha linum.Z. Naturf. 26b:1276

    Google Scholar 

  25. Steudle, E., Zimmermann, U. 1974. Determination of the hydraulic conductivity and of reflection coefficients inNitella flexilis by means of direct cell-turgor pressure measurements.Biochim. Biophys. Acta 332:399

    Google Scholar 

  26. Teorell, T. 1951. Zur quantitativen Behandlung der Membranpermeabilität.Z. Elektrochem. 55:460

    Google Scholar 

  27. Zimmermann, U., Raede, H., Steudle, E. 1969. Kontinuierliche Druckmessung in Pflanzenzellen.Naturwissenschaften 56:634

    Google Scholar 

  28. Zimmermann, U., Steudle, E. 1970. Bestimmung von Reflexionskoeffizienten an der Membran der AlgeValonia utricularis.Z. Naturf. 25b:500

    Google Scholar 

  29. Zimmermann, U., Steudle, E. 1971. Effects of potassium concentration and osmotic pressure of sea water on the cell-turgor pressure ofChaetomorpha linum.Marine Biol. 11:132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, U., Steudle, E. The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation inValonia utricularis . J. Membrain Biol. 16, 331–352 (1974). https://doi.org/10.1007/BF01872422

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872422

Keywords

Navigation