Skip to main content

The Use of Microcosms for Evaluation of Interactions between Pollutants and Microorganisms

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 7))

Abstract

Experimental studies of the interactions within microbial communities have been a standard banner of microbial ecologists for many years. Their emphasis has been to bridge the gap between pure culture studies in the laboratory and field observations in natural ecosystems. Concern over the long-term effects of pollution on ecosystem processes has continuously challenged existing knowledge about the types, rates, and extents of these interactions, including their resistance and resilience to a large array of man-made perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, W., 1966, Microcosm studies on estuarine waters. I. The replicability ofmicrocosms, J. Water Pollut. Control Fed. 38:258–270.

    PubMed  CAS  Google Scholar 

  • Adler, D., Amdurer, M., and Santschi, P. H., 1980, Metal tracers in two marine microcosms: Sensitivity to scale and configuration, in: Microcosms in Ecological Research (J. P. Giesey, ed.), pp. 348–368, Department of Energy, Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.

    Google Scholar 

  • Ahmad, N., Walgenbach, D. D., and Sutler, G. R., 1979, Degradation rates of technical carbofuran and a granular formulation in four soils with known insecticide use history. Bull. Environ. Contam. Toxicol. 23:572–574.

    Article  PubMed  CAS  Google Scholar 

  • Albright, L. J., and Wilson, E. M., 1974, Sublethal effects of several metallic salts-organic compound combinations upon the heterotrophic microflora of a natural water. Water Res. 8:101–105.

    Article  CAS  Google Scholar 

  • Anderson, J. R., 1978, Pesticide effects on non-target soil microorganisms, in: Pesticide Microbiology (I. R. Hill and S. J. L. Wright, eds.), pp. 313–359, Academic Press, London.

    Google Scholar 

  • Anderson, R. V., Elliott, E. T., McClellan, J. F., Coleman, D. C., Cole, C. V., and Hund, H. W., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes, Microb. Ecol. 4:361–371.

    Article  Google Scholar 

  • Atlas, R. M., Pramer, D., and Bartha, R., 1978, Assessment of pesticide effects on non-target soil microorganisms. Soil Biol. Biochem. 10:231–239.

    Article  CAS  Google Scholar 

  • Ausmus, B. S., Dodson, G. J., and Jackson, D. R., 1978, Behavior of heavy metals in forest microcosms. III. Effects on litter-soil carbon metabolism, Water Air Soil Pollut. 10: 19–26.

    Article  CAS  Google Scholar 

  • Babich, H., and G. Stotzky, 1980, Environmental factors that influence the toxicity of heavy metals and gaseous pollutants to microorganisms, Crit. Rev. Microbiol. 8:99–145.

    Article  PubMed  CAS  Google Scholar 

  • Barsdate, R. J., Prentki, T. R., and Fenchel, T., 1974, Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers, Oikos 25:239–251.

    Article  CAS  Google Scholar 

  • Baughman, G. L., and Burns, L. A., 1980, Transport and transformation of chemicals: A perspective, in: Handbook of Environmental Chemistry. Vol. 2, Part A (O. Hutzinger, ed.), pp. 1–17, Springer-Verlag, Berlin.

    Google Scholar 

  • Bazin, M. J., Saunders P. T., and Prosser, J. I., 1976, Models of microbial interactions in the soil, Crit. Rev. Microbiol. 4:463–498.

    Article  CAS  Google Scholar 

  • Beers, J. R., Stewart, G. L., and Hoskins, K. D., 1977, Dynamics of micro-zooplankton populations treated with copper: Controlled ecosystem pollution experiment. Bull. Mar. Sci. 27:66–79.

    CAS  Google Scholar 

  • Beyers, R. J., 1964, The microcosm approach to ecosystem biology. Am. Biol. Teach. 26:491–497.

    Google Scholar 

  • Billen, G., 1982, Modeling the processes of organic matter degradation and nutrient recycling in sedimentary systems, in: Sediment microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 15–52, Academic Press, New York.

    Google Scholar 

  • Billen, G., Joiris, C., and Wollast, R., 1974, A bacterial methyl mercury-mineralizing activity in river sediments. Water Res. 8:219–255.

    Article  CAS  Google Scholar 

  • Bisogni, J. J., and Lawrence, A. W., 1975, Kinetics of mercury methylation in aerobic and anaerobic aquatic environments, J. Water Pollut. Control Fed. 47:135–152.

    PubMed  CAS  Google Scholar 

  • Blau, G. E., and Neely, W. B., 1975, Mathematical model building with an application to determine the distribution of Dursban insecticide added to a simulated ecosystem, Adv. Ecol. Res. 9:133–163.

    Article  Google Scholar 

  • Blum, J. E., and Bartha, R., 1980, Effect of salinity on methylation of mercury. Bull. Environ. Contam. Toxicol. 25: 404–408.

    Article  PubMed  CAS  Google Scholar 

  • Bobbie, R. J., and White, D. C., 1980, Characterization of benthic microbial community structure by high resolution gas chromatography of fatty acid methyl esters, Appl. Environ. Microbiol. 39:1212–1222.

    PubMed  CAS  Google Scholar 

  • Bott, T. L., and Rogenmuser, K., 1978, Effects of No. 2 fuel oil, Nigerian crude oil, and used crankcase oil on attached algal communities: Acute and chronic toxicity of water-soluble constitutents, Appl. Environ. Microbiol. 36:673–682.

    PubMed  CAS  Google Scholar 

  • Bott, T. L., Preslan, J., Finlay, J., and Brunker, R., 1976, The use of flowing-water microcosms and ecosystem streams to study microbial degradation of leaf litter and nitrilotriacetic acid. Dev. Ind. Microbiol. 18:171–184.

    CAS  Google Scholar 

  • Bourquin, A. W., and Pritchard, P. H. (eds.), 1979, Workshop: Microbial Degradation of Pollutants in Marine Environments. U.S. Environmental Protection Agency, EPA-600/9–72-012, Gulf Breeze, Florida, 552 pp.

    Google Scholar 

  • Bourquin, A. W., Walker, W. W., and Pritchard, P. H., 1981, Screening test to estimate the degradation rates of toxicants in estuarine environments. Am. Soc. Microbiol, (abstr.). p. 276.

    Google Scholar 

  • Boyle, T. P., Robinson-Wilson, E. F., Petty, J. D., and Weber, W., 1980, Degradation of pentachlorophenol in simulated lentic environment, Bull. Environ. Contam. Toxicol. 24:177–184.

    Article  PubMed  CAS  Google Scholar 

  • Branson, D. R., 1978, Predicting the fate of chemicals in the aquatic environment from laboratory data, in: Estimating the Hazard of Chemical Substances to Aquatic Life (J. Cairns, K. L. Dickson, and A. W. Maki, eds.), pp. 55–70, ASTM STP 657.

    Chapter  Google Scholar 

  • Brockway, D. L., Hill, J., Maudsley, J., and Lassiter, R. R., 1979, Development, replicability and modeling of naturally derived microcosms, Int. J. Environ. Stud. 13:149–158.

    Article  CAS  Google Scholar 

  • Bull, A. T., 1980, Biodegradation: Some attitudes and strategies of microorganisms and microbiologists, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 107–136, Academic Press, New York.

    Google Scholar 

  • Burney, C. M., Johnson, K. M., and Sieburth, J. McN., 1981, Diel flux of dissolved carbohydrate in a salt marsh and a simulated estuarine ecosystem, Mar. Biol. 63:175–187.

    Article  CAS  Google Scholar 

  • Burns, L. A., Cline, D. M., and Lassiter, R. L., 1982, Exposure Analysis Modeling System (EXAMS): User Manual and System Documentation. U.S. Environmental Protection Agency, EPA-600/3–82-023, 316 pp.

    Google Scholar 

  • Cairns, J., 1981, Biological Monitoring. VI. Future needs, Water Res. 15:941–952.

    Article  Google Scholar 

  • Cappenberg, T. E., 1974, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations, Antonie van Leeuwenhoek. J. Microbiol. Serol. 40:285–295.

    Article  CAS  Google Scholar 

  • Case, J. N., 1978, The engineering aspects of capturing a marine environment, CEPEX and others, Rapp. P. V. Renn. Cons. Int. Explor. Mer. 173:49–58.

    Google Scholar 

  • Chapman, A. W., and Atkinson, D. E., 1977, Adenine nucleotide concentrations and turnover rates, their correlation with biological activity in bacteria and yeast, Adv. Microbiol. Physiol. 15:253–306.

    Article  CAS  Google Scholar 

  • Charyulu, P. B. B., Roamakrishna, C., and Rao, V. R., 1980, Effect of 2-aminobenzimidazole on nitrogen fixers from flooded soil and their nitrogenase activity, Bull. Environ. Contam. Toxicol. 25:482–486.

    Article  PubMed  CAS  Google Scholar 

  • Chatarpaul, L., Robinson, J. B., and Kaushik, N. K., 1979, Role of tubificid worms on nitrogen transformations in stream sediment, J. Fish. Res. Board Can. 36:673–678.

    Article  Google Scholar 

  • Clesceri, L. S., Park, P. A., and Bloomfield, J. A., 1977, General model of microbial growth and decomposition in aquatic ecosystem, Appl. Environ. Microbiol 33:1047–1058.

    PubMed  CAS  Google Scholar 

  • Cleveland, M. E., 1983, Environmental factors affecting the sorption of pesticides to aquatic sediments, M.S. thesis. University of West Florida, Pensacola, 27 pp.

    Google Scholar 

  • Cole, C. v., Elliott, E. T., Hunt, H. W., and Coleman, D. C., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorus transformations, Microb. Ecol. 4:381–387.

    Article  CAS  Google Scholar 

  • Cole, L. K., Metcalf, R. L., and Sanborn, J. R., 1976, Environmental fate of insecticides in terrestrial model ecosystems. Int. J. Environ. Stud. 10:7–14.

    Article  CAS  Google Scholar 

  • Coleman, D. C., Cole, C. V., Hunt, H. W., and Klein, D. A., 1978a, Trophic interactions in soils as they affect energy and nutrient dynamics: Introduction, Microb. Ecol. 4:345–349.

    Article  CAS  Google Scholar 

  • Coleman, D. C., Anderson, R. V., Cole, C. V., Elliott, E. T., Woods, L., and Campion, M. K., 1978b, Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon, Microb. Ecol. 4:373–380.

    Article  CAS  Google Scholar 

  • Colwell, P. R., 1978, Toxic effects of pollutants on microorganisms, in: Principles of Ecotoxicology (G. C. Butler, ed.), pp. 275–295, John Wiley, New York.

    Google Scholar 

  • Connolly, J. P., and O’Connor, D. J., 1982, WASTOX: Preliminary Estuary and Stream Version Documentation, Annual Report. U.S. Environmental Protection Agency cooperative agreement CR807827–02, Gulf Breeze, Florida, 96 pp.

    Google Scholar 

  • Cooke, G. D., 1967, The pattern of autotrophic succession in laboratory microcosms. Bioscience 17:717–721.

    Google Scholar 

  • Cooke, G. D., 1974, Aquatic laboratory microsystems and communities, in: Structure and Function of Fresh Water Microbial Communities (J. Cairns, ed.), pp. 47–86, Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • Cooper, W., Stout, J., and Boling, R., 1982, Fate and Effects of p-Cresol in Outdoor Stream Channels, Annual Report. U.S. Environmental Protection Agency cooperative agreement CR80755010, U.S. EPA Environmental Research Laboratory, Duluth, Minnesota, 86 pp.

    Google Scholar 

  • Craib, J. S., 1965, A sampler for taking short undisturbed marine cores, J. Cons. Cons. Perm. Int. Explor. Mer. 30:34–39.

    Google Scholar 

  • Cummins, K. W., 1974, Structure and function of stream ecosystems. Bioscience 24: 631–641.

    Google Scholar 

  • Davies, J. M., and Gamble, J. C., 1979, Experiments with large enclosed ecosystems, Philos. Trans. R. Soc. London Ser. B. 286:523–574.

    Article  CAS  Google Scholar 

  • DePinto, J. V., Guminiak, R. F., Howell, R. S., and Edzwald, J. K., 1980, Use of microcosms to evaluate acid lake recovery techniques, in: Microcosms in Ecological Research (J. P. Giesy, ed.). Department of Energy Symposium Ser. No. 52 (conf-781101), pp. 562–582, NTIS, Springfield, Virginia.

    Google Scholar 

  • Draggan, S., 1977, Effects of substrate type and arsenic dosage level on arsenic behavior in grassland microcosms. I. Preliminary results on 74As transport, in: Terrestrial Microcosms and Environmental Chemistry (J. M. Witt and J. W. Gillet, eds.), pp. 102–110, National Science Foundation, NSF/RA 79–0026.

    Google Scholar 

  • Draggan, S., 1979, The role of microcosms in ecological research. Int. J. Environ. Stud. 13:83–182.

    Article  Google Scholar 

  • Dudzik, M., Harte, J., Jassby, A., Lapan, E., Levy, D., and Rees, J., 1979, Some considerations in the design of aquatic microcosms for plankton studies. Int. J. Environ. Stud. 13:125–130.

    Article  CAS  Google Scholar 

  • Edberg, N., and Hofsten, B., 1973, Oxygen uptake of bottom sediments studied in situ and in the laboratory. Water Res. 7:1285–1294.

    Article  Google Scholar 

  • Edwards, R. W., and Rolley, H. L. J., 1965, Oxygen consumption of river muds, J. Ecol. 53:1–19.

    Article  Google Scholar 

  • Elliott, E. T., Cole, C. V., Coleman, D. C., Anderson, R. V., Hunt, H. W., and McClellan, J. F., 1979, Amoebal growth in soil microcosms, a model system of Ci N and P trophic dynamics, Int. J. Environ. Stud. 13:169–174.

    Article  CAS  Google Scholar 

  • Elmgren, R., Vargo, G. A., Grassle, J. F., Grassle, J. P., Heinle, D. R., Langlois, G., and Vargo, S. L., 1980, Trophic interactions in experimental marine ecosystem perturbed by oil, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 779–800, U.S. Department of Energy Symposium Ser. 52 (CONF-781101), NTIS, Springfield, Virginia.

    Google Scholar 

  • Einer, J. K., Wildish, D. J., and Johnston, D. W., 1981, Fate of sprayed formulated aminocarb in freshwater, Chemosphere 10:1025–1034.

    Article  Google Scholar 

  • Falco, J. W., Sampson, K. T., and Carsel, R. F., 1977, Physical modeling of pesticide degradation, Dev. Ind. Microbiol. 18:193–202.

    Google Scholar 

  • Fenchel, T. M. and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson, ed.), pp. 285–299, Blackwell, Oxford, England.

    Google Scholar 

  • Flint, R.. W., and Goldman, C. R., 1975, The effects of a benthic grazer on the primary productivity of the littoral zone of Lake Tahoe, Limnol. Oceanogr. 20:935–944.

    Article  CAS  Google Scholar 

  • Flint, R. W., Duke, T. W., and Kalke, R. D., 1978, Benthos investigations: Sediment boxes or natural bottom. Bull. Environ. Contam. Toxicol. 28:257–265.

    Article  Google Scholar 

  • Focht, D. D., and Verstraete, W., 1977, Biochemical ecology of nitrification and denitrification, in: Advances in Microbial Ecology. Vol. 1 (M. Alexander, ed.), pp. 135–214, Plenum Press, New York.

    Google Scholar 

  • Fry, J. C., 1982, Interaction between bacteria and benthic invertebrates, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 171–201, Academic Press, New York.

    Google Scholar 

  • Fry, J. C., and Ramsey, A. J., 1977, Changes in the activity of epiphytic bacteria of Elodea canadensis and Char vulgaris flowing treatment with the herbicide paraquat, Limnol. Oceanogr. 22:556–561.

    Article  CAS  Google Scholar 

  • Gee, J. H., and Bartnik, V. G., 1969, Simple stream tank simulating a rapids environment, J. Fish. Res. Board Can. 26:2227–2230.

    Article  Google Scholar 

  • Gerike, P., and Fischer, W. K., 1979, A correlation study of the biodegradability determinations with various chemicals in various tests, Ecotoxicol. Environ. Safety 3:159–173.

    Article  PubMed  CAS  Google Scholar 

  • Giddings, J. M., and Eddleman, G. K., 1977, The effects of microcosm size and substrate type on aquatic microcosm behavior and arsenic transport. Arch. Environ. Contam. Toxicol. 6:491–505.

    Article  CAS  Google Scholar 

  • Giddings, J. M., and Eddleman, G. K., 1978, Photosynthesis/respiration ratios in aquatic microcosms under arsenic stress, Water Air Soil Pollut. 9:207–212.

    Article  CAS  Google Scholar 

  • Giddings, J. M., Walton, B. T., Eddleman, G. K., and Olson, K. G., 1979, Transport and fate of anthracene in aquatic microcosms, in: Workshop: Microbial Degradation of Pollutants in Marine Environments (A. W. Bourquin and P. H. Pritchard, eds.), pp. 312–320, U.S. Environmental Protection Agency, EPA-600/9–79–012.

    Google Scholar 

  • Giesy, J. P., 1978, Cadmium inhibition of leaf decomposition in an aquatic microcosm, Chemosphere 6:467–475.

    Article  Google Scholar 

  • Giesy, J. P. (ed.), 1980, Microcosms in Ecological Research. Symposium, Savannah River Ecology Laboratory, Augusta, Georgia, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia, 1110 pp.

    Google Scholar 

  • Gillett, J. W., and Gile, J. D., 1976, Pesticide fate in terrestrial laboratory ecosystems, Int. J. Environ. Stud. 10:15–22.

    Article  Google Scholar 

  • Goodyear, C. P., Boyd, C. E., and Beyers, R. J., 1972, Relationships between primary productivity and mosquitofish (Gambusia affinis) production in large microcosms, Limnol. Oceanogr. 17:445–450.

    Article  Google Scholar 

  • Goulder, R., Blanchard, A. S., Sanderson, P. L., and Wright, B., 1978, A note on the recognition of pollution stress in populations of estuarine bacteria, J. Appl. Bacteriol. 46:285–289.

    Google Scholar 

  • Goulder, R., Blanchard, A. S., Sanderson, P. L., and Wright, B., 1980, Relationships between heterotrophic bacteria and pollution in an industrial estuary, Water Res. 14:591–601.

    Article  Google Scholar 

  • Graetz, D. A., Chesters, G., Daniel, T. C., Newland, L. W., and Lee, G. B., 1970, Parathion degradation in lake sediments, J. Water Pollut. Control Fed. 2:R76-R94.

    CAS  Google Scholar 

  • Graetz, D. A., Keeney, D. R., and Aspiras, R. B., 1973, Eh status of lake sediment-water systems in relation to nitrogen transformations, Limnol. Oceanogr. 18:908–1017.

    Article  CAS  Google Scholar 

  • Greaves, M. P., Davies, H. A., Marsh, J. A. P., and Wingfield, G. L, 1976, Herbicides and soil microorganisms, Crit. Rev, Microbiol. 5:1–38.

    Article  CAS  Google Scholar 

  • Griffiths, R. P., Caldwell, B. A., Broich, W. A., and Morita, R. Y., 1982, Long-term effects of crude oil on microbial processes in subarctic marine sediments: Studies on sediments amended with organic nutrients, Mar. Pollut. Bull. 13:273–278.

    Article  CAS  Google Scholar 

  • Hammonds, A. S., 1981, Methods for Ecological Toxicology: A Critical Review of Laboratory Multispecies Tests. U.S. Environmental Protection Agency, EPA-56-/11–80–026, 307 pp.

    Google Scholar 

  • Hansen, J. I., Henriksen, K., and Blackburn, T. H., 1981, Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments, Microb. Ecol. 7:297–304.

    Article  CAS  Google Scholar 

  • Hansen, S. R., and Garton, R. R., 1982, The effects of diflubenzuron on a complex laboratory stream community. Arch. Environ. Contam. Toxicol. 11:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J. T., and Valett, M., 1981, Natural and microcosm phytoneuston communities of Sequin Bay, Washington, Estuarine Coastal Shelf Sci. 12:3–12.

    Article  Google Scholar 

  • Hargrave, B. T., 1970, The effect of a deposit-feeding amphipod on;he metabolism of benthic microflora, Limnol. Oceanogr. 15:21–30.

    Google Scholar 

  • Hargrave, B. T., 1976, The central role of invertebrate forces in sediment decomposition, in: Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 301–321, Blackwell, Oxford, England.

    Google Scholar 

  • Harris, W. F., 1980, Microcosms as Potential Screening Tools for Evaluating Transport and Effects of Toxic Substances, U.S. Environmental Protection Agency, EPA-600/3–80–092, 379 pp.

    Google Scholar 

  • Harrison, P. G., 1977, Decomposition of macrophyte detritus in seawater: Effects of grazing by amphipods, Oikos 28:165–169.

    Article  Google Scholar 

  • Harrison, P. G., and Mann, K. H., 1975, Detritus formation from eelgrass (Zostera marina): The relative effects of fragmentation, leaching and decay, Limnol. Oceanogr. 20:924–934.

    Article  CAS  Google Scholar 

  • Harte, J., Levy, D., Rees, J., and Saegebarth, E., 1980, Making microcosms an effective assessment tool, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 105–137, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.

    Google Scholar 

  • Harty, B., and McLachlan, A., 1982, Effects of water-soluble fractions of crude oil and dispersants on nitrate generation by sandy beach microflora. Mar. Pollut. Bull. 13:287–291.

    Article  CAS  Google Scholar 

  • Hauxhurst, J. D., Kaneko, T., and Atlas, R. M., 1981, Characteristics of bacterial communities in the Gulf of Alaska, Microb. Ecol. 7:167–182.

    Article  Google Scholar 

  • Heath, R. T., 1979, Holistic study of an aquatic microcosm: Theoretical and practical implications, Int. J. Environ. Stud. 13:87–93.

    Article  Google Scholar 

  • Henriksen, K., 1980, Measurement of in situ rates of nitrification in sediment, Microb. Ecol. 6:329–337.

    Article  CAS  Google Scholar 

  • Henriksen, K., Hansen, J. L, and Blackburn, T. H., 1980, The influence of benthic infauna on exchange rates of inorganic nitrogen between sediment and water, Ophelia Suppl. 1:249–256.

    CAS  Google Scholar 

  • Henriksen, K., Hansen, J. L, and Blackburn, T. H., 1981, Rates of nitrification, distribution of nitrifying bacteria and nitrate fluxes in different types of sediment from Danish waters, Mar. Biol. 61:299–304.

    Article  CAS  Google Scholar 

  • Herzberg, M. A., Klein, A., and Coleman, D. C., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. IL Physiological responses of selected rhizosphere bacteria, Microb. Ecol 4:351–359.

    Article  CAS  Google Scholar 

  • Hill, J., 1979, Mathematical modeling of pesticides in the environment: Current and future developments, J. Environ. Systems 9:99–107.

    Google Scholar 

  • Hill, J., and Wiegert, R. G., 1980, Microcosms in ecological modeling, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 138–163, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.

    Google Scholar 

  • Hopkinson, C. S., and Day, J. W., 1977, A model of the Barataria Bay salt marsh ecosystem, in:Ecosystem Modeling in Theory and Practice (A. S. Hall and J. W. Day, eds.), pp. 236–265, Wiley-Interscience, New York.

    Google Scholar 

  • Howard, P. H., Saxena, J., and Sikka, H., 1978, Determining the fate of chemicals. Environ. Sci. Technol. 12:398–407.

    Article  CAS  Google Scholar 

  • Howes, B. C., Howarth, R. W., Teal, J. M., and Valiela, I., 1981, Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production, Limnol. Oceanogr. 26:350–360.

    Article  Google Scholar 

  • Hsu, T. S., and Bartha, R., 1979, Accelerated mineralization of two organophosphate insecticides in the rhizosphere, Appl. Environ. Microbiol 37:36–41.

    PubMed  CAS  Google Scholar 

  • Hylleberg, J., and Henriksen, K., 1980, The central role of bioturbation in sediment mineralization and element cycling, Ophelia Suppl. 1:1–16.

    CAS  Google Scholar 

  • Isensee, A. R., 1976, Variability of aquatic model ecosystem-derived data. Int. J. Environ. Stud. 10:35–41.

    Article  CAS  Google Scholar 

  • Isensee, A. R., Kearney, P. C., Woolson, E. A., Jones, G. E., and Williams, V. P., 1973, Distribution of alkyl arsenicals in the model ecosystem. Environ. Sci. Technol. 7:841–845.

    Article  CAS  Google Scholar 

  • Jackson, D. R., Washburne, C. D., and Ausmus, B. S., 1977, Loss of Ca and NO3-N from terrestrial microcosms as an indicator of soil pollution. Water Air Soil Pollut. 8:279–284.

    Article  CAS  Google Scholar 

  • Jackson, D. R., Ausmus, B. S., and Levin, M., 1979, Effects of arsenic on nutrient dynamics of grassland microcosms and field plots, Water Air Soil Pollut. 11:13–21.

    Article  CAS  Google Scholar 

  • Jahnke, R. A., Emerson, S. R., and Murray, J. W., 1982, A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments, Limnol. Oceanogr. 27:610–623.

    Article  CAS  Google Scholar 

  • Jassby, A., Dudzik, M., Rees, J., Lapan, E., Levy, D., and Harte, J., 1977a, Production Cycles in Aquatic Microcosms. U.S. Environmental Protection Agency, EPA-600/7–77–077, 51 pp.

    Book  Google Scholar 

  • Jassby, A., Rees, J., Dudzik, M., Levy, D., Lapan, E., and Harte, J., 1977b, Trophic Structure Modifications by Planktovorous Fish in Aquatic Microcosms. U.S. Environmental Protection Agency, EPA-600/7–77–096, 18 pp.

    Google Scholar 

  • Jensen, S., and Jernelov, A., 1969, Biological methylation of mercury in aquatic organisms, Nature (London) 223:753–754.

    Article  CAS  Google Scholar 

  • Jernelov, A., 1978, Release of methyl mercury from sediments with layers containing inorganic mercury at different depths, Limnol. Oceanogr. 15:958–960.

    Article  Google Scholar 

  • Jones, J. G., 1979, Microbial nitrate reduction in freshwater sediments, J. Gen. Microbiol. 115:27–35.

    CAS  Google Scholar 

  • Jones, J. G., 1982, Activities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 107–145, Academic Press, New York.

    Google Scholar 

  • Jones, R. D., and Hood, N. A., 1980, The effects of organophosphorus pesticides on estuarine ammonia oxidizers, J. Can. Microbiol. 26:1296–1299.

    Article  CAS  Google Scholar 

  • Juengst, F. W., and Alexander, M., 1975, Effect of environmental conditions on the degradation of DDT in model marine ecosystems, Mar. Biol. 33:1–6.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W., Brown, D. S., and Scott, T. A., 1979, Sorption of hydrophobic pollutants on natural sediments, Water Res. 13:241–247.

    Article  CAS  Google Scholar 

  • Katan, J., Fuhremann, T. W., and Lichtenstein, E. P., 1976, Binding of [14C]Parathion in soil: A reassessment of pesticide persistence, Science 193:891–894.

    Article  PubMed  CAS  Google Scholar 

  • Kloskowski, R., Schevnert, I., Klein, W., and Forte, F., 1981, Laboratory screening of distribution, conversion and mineralization of chemicals in the soil-plant-system and comparison to outdoor experimental data, Chemosphere 10:1089–1100.

    Article  CAS  Google Scholar 

  • Kremer, J. N., 1979, An analysis of the stability characteristics of an estuarine ecosystem model, in: Marsh-Estuarine Systems Simulations (R. F. Dame, ed.), pp. 189–206, University of South Carolina Press, Columbia.

    Google Scholar 

  • Larsson, V., and Hastrom, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol 52:199–206.

    Article  Google Scholar 

  • Lassiter, R. R., 1975, Modeling the Dynamics of Biological and Chemical Components of Aquatic Ecosystems. U.S. Environmental Protection Agency, EPA-660/3–75–012, 54 pp.

    Google Scholar 

  • Lassiter, R. R., 1979, Microcosms as ecosystem for testing ecological models, in: State-of-the Art in Ecological Modeling. Vol. 7 (S. E. Jorgensen, ed.), pp. 127–161, Pergamon Press, Oxford.

    Google Scholar 

  • Lassiter, R. R., Baughman, G. L., and Burns, L. A., 1978, Fate of toxic organic substances in the aquatic environment, in: State-of-the-Art in Ecological Modeling. Vol. 7 (S. E. Jorgensen, ed.), pp. 219–295, Pergamon Press, Oxford.

    Google Scholar 

  • Lauff, G. H., and Cummins, K. W., 1964, A model stream for studies in lotic ecology. Ecology 45:188–191.

    Article  Google Scholar 

  • Lee, R. F., and Ryan, C., 1979, Microbial degradation of organochlorine compounds in estuarine waters and sediments, in: Microbial Degradation of Pollutants in Marine Environments (A. W. Bourquin and P. H. Pritchard, eds.), pp. 443–450, U.S. Environmental Protection Agency, EPA-600/9–79–012.

    Google Scholar 

  • Lee, R. F., Gardner, W. S., Anderson, J. W., Blaylock, J. W., and Barwell-Clarke, J., 1978, Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. Environ. Sci. Technol. 12:832–838.

    Article  CAS  Google Scholar 

  • Levandowsky, M., 1977, Multispecies cultures and microcosms, in: Marine Ecology. Vol. 111 (O. Kinne, ed.), pp. 1399–1452, John Wiley, New York.

    Google Scholar 

  • Levin, S. A., 1982, Newprospectives in Ecotoxicology, Workshop Report. Ecosystems Research Center, Cornell University, Ithaca, New York, 125 pp.

    Google Scholar 

  • Lewis, D. L., and Holm, H. W., 1981, Rates of transformation of methyl parathion and diethyl phthalate by aufwuchs microorganisms, Appl. Environ. Microbiol. 42:698–703.

    PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P., Liang, T. T., and Fuhremann, T. W., 1978, A compartmentalized microcosm for studying the fate of chemicals in the environment, J. Agric. Food, Chem. 26:948–953.

    Article  CAS  Google Scholar 

  • Liu, D., Thomson, K., and Stachan, W. M., 1980, Biodegradation of carbaryl in simulated aquatic environments. Bull. Environ. Contam. Toxicol. 27:412–417.

    Article  Google Scholar 

  • Liu, D., Thomson, K., and Strachen, W. M., 1981, Biodegradation of pentachlorophenol in a simulated aquatic environment, Bull. Environ. Contam. Toxicol. 26:85–90.

    Article  PubMed  Google Scholar 

  • Lopez, G. R., Levinton, J. S., and Slobodkin, L. B., 1977, The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community, Oecologia (Berlin) 30:111–127.

    Google Scholar 

  • Maki, A. W., 1980, Evaluation of toxicant effects on structure and function of model stream communities: Correlation with natural effects, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 583–609, Department of Energy Symposium Ser. 52 (Conf-781101), NTIS.

    Google Scholar 

  • Mann, K. H., 1979, Qualitative aspects of estuarine modeling, in: Marsh-Estuarine Systems Simulation (R. F. Dame, ed.), pp. 207–220, University of South Carolina Press, Columbia.

    Google Scholar 

  • Marshall, W. K., and Roberts, J. R., 1971, Simulation modeling of the distribution of pesticides in ponds, Nat. Res. Counc. Can. NRCC/CNRR 16073 2:253–278.

    Google Scholar 

  • Martin, Y. P., and Bianchi, M. A., 1980, Structure, diversity and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton, Microb. Ecol. 5:265–279.

    Article  Google Scholar 

  • McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology (R. O. Brinkhurst and D. G. Cook, eds.), pp. 253–317, Plenum Press, New York.

    Chapter  Google Scholar 

  • Mclntire, C. D., 1964, Primary production in laboratory streams, Limnol. Oceanogr. 9:92–102.

    Article  Google Scholar 

  • Mclntire, C. D., 1965, Structural characteristics of benthic algal communities in laboratory streams, Limnol. Oceanogr. 9:92–102.

    Article  Google Scholar 

  • Mclntire, C. D., 1966, Some factors affecting respiration of periphyton communities in lotic environments, Ecology 47:918–930.

    Article  Google Scholar 

  • Mclntire, C. D., 1978, Periphyton assemblages in laboratory streams, in: River Ecology (B. A. Whitton, ed.), pp. 403–430, University of California Press, Berkeley.

    Google Scholar 

  • Mclntire, C. D., Colby, J. A., and Hall, J. D., 1975, The dynamics of small lotic ecosystems: A modeling approach, Verh. Int. Verein. Limnol. 19:1599–1609.

    Google Scholar 

  • McKinley, K. R., and Wetzel, R. G., 1979, Photolithotrophy, photoheterotrophy and chemoheterotrophy: Patterns of resource utilization on an annual and a diurnal basis within pelagic microbial communities, Microb. Ecol. 5:1–15.

    Article  CAS  Google Scholar 

  • Mehran, M., and Tanji, K. K., 1974, Computer modeling of nitrogen transformations in soil, J. Environ. Qual. 3:391–410.

    Article  CAS  Google Scholar 

  • Metcalf, R. L., Sangha, G. K., and Kapoor, I. P., 1971, Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5:709–713.

    Article  CAS  Google Scholar 

  • Metcalf, L., Kapoor, P., Schuth, C. K., and Sherman, P., 1973, Model ecosystem studies of the environmental fate of six organochlorine pesticides.Environ. Health Perspect. 4:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Nash, R. G., and Beall, M. L., 1977, A microagroecosystem to monitor the environmental fate of pesticides, in: Terresterial Microcosms and Environmental Chemistry (J. M. Witt and J. W. Gillett, eds.), pp. 86–94, National Science Foundation, NSF/RA 79–0026.

    Google Scholar 

  • Nash, R. G., Beall, M. L., and Harris, W. G., 1977, Toxaphene and 1,1,1,-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) losses from cotton in an agroecosystem chamber, J. Agric. Food Chem. 25:336–341.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J. D., and Colwell, R. R., 1975, The ecology of mercury-resistant bacteria in Chesapeake Bay, Microb. Ecol. 2:191–218.

    Google Scholar 

  • Nixon, S. W., 1981, Remineralization and nutrient cycling in coastal marine ecosystems, in: Estuaries and Nutrients (B. J. Neilson and L. E. Cronin, eds.), pp. 111–138, Humana Press, Clifton, New Jersey.

    Chapter  Google Scholar 

  • Nixon, S. W., and Kremer, J. N., 1977, Narragansett Bay—The development of a composite simulation model for a New England estuary, in: Ecosystem Modeling in Theory and Practice (C. A. S. Hall and J. W. Day, eds.), pp. 622–673, John Wiley, New York.

    Google Scholar 

  • Nixon, S. W., Oviatt, C. A., Kremer, J. N., and Perez, K., 1979, The use of numerical models and laboratory microcosms in estuarine ecosystem analysis—simulations of a winter phytoplankton bloom, in: Marsh-Estuarine Systems Simulations (R. F. Dame, ed.), pp. 165–188, University of South Carolina Press, Columbia.

    Google Scholar 

  • Odum, E. P., 1969, The strategy of ecosystem development, Science 164:262–270.

    CAS  Google Scholar 

  • Olanczuk-Neyman, K. M., and Vosjan, J. H., 1977, Measuring respiratory electron-transportsystem activity in marine sediments, Neth. J. Sea Res. 11:1–13.

    Article  CAS  Google Scholar 

  • Olsen, B. H., and Cooper, R. C., 1976, Comparison of aerobic and anaerobic methylation of mercury chloride by San Fransico Bay sediments. Water Res. 10:113–116.

    Article  Google Scholar 

  • O’Neill, R. B., Ausmus, B. S. Jackson, D. R., Van Hook, R. I., Van Voris, P., Washburne, C., and Watson, A. P., 1977, Monitoring terrestrial ecosystems by analysis of nutrient export, Water Air Soil Pollut. 8:271–277.

    Article  Google Scholar 

  • Orndorff, S. A., and Colwell, R. R., 1980, Effect of Kepone on estuarine microbial activity, Microb. Ecol. 6:357–368.

    Article  CAS  Google Scholar 

  • Painter, H. A., 1970, A review of literature of inorganic nitrogen metabolism in microorganisms, Water Res. 4:393.

    Article  CAS  Google Scholar 

  • Pamatmat, M. M., 1971, Oxygen consumption by the seabed. IV. Shipboard and laboratory experiments, Limnol. Oceanogr. 16:536–550.

    Article  Google Scholar 

  • Pamatmat, M. M., and Bhagwat, A. M., 1973, Anaerobic metabolism in Lake Washington sediments, Limnol. Oceanogr. 18:611–627.

    Article  CAS  Google Scholar 

  • Paris, D. F., Steen, W. C., Baughman, G. L., and Barnett, J. T., 1981, Second-order model to predict microbial degradation of organic compounds in natural waters, Appl. Environ. Microbiol. 41:603–609.

    PubMed  CAS  Google Scholar 

  • Patten, B. C., and Witkamp, M., 1967, Systems analysis of 134cesium kinetics in terrestrial microcosms. Ecology 48:813–824.

    Article  Google Scholar 

  • Perez, K. T., Morrison, G. M., Lackie, N. F., Oviatt, C. A., Nixon, S. W., Buckley, B. A., and Heltshe, J. F., 1977, The importance of physical and biotic scaling to the experimental simulation of a coastal marine ecosystem, Helgol. Wis. Meeresunters. 30:144–162.

    Article  CAS  Google Scholar 

  • Peterson, R. C., and Cummins, K. W., 1974, Leaf processing in a woodland stream.Fresh Water Biol 4:343–368.

    Article  Google Scholar 

  • Pfaender, F. K., and Alexander, M., 1972, Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities, Agric. Food Chem. 20:842–846.

    Article  CAS  Google Scholar 

  • Pilson, M. E. Q., Oviatt, C. A., Vargo, G. A., and Vargo, S. L., 1979, Replicability of MERL microcosms: Initial observations, in: Advances in Marine Environmental Research (F. S. Jacoff, ed.), U.S. Environmental Protection Agency, EPA-600/9–79–035, 409 pp.

    Google Scholar 

  • Pilson, M. E. Q., Oviatt, C. A., and Nixon, S. W., 1980, Annual nutrient cycles in a marine microcosm, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 753–778, U.S. Department of Energy Symposium Ser. 52 (Conf-7811–1), NTIS, Springfield, Virginia.

    Google Scholar 

  • Portier, R. J., and Meyers, S. P., 1981, Chitin transformation and pesticide interactions in a simulated aquatic microenvironmental system. Dev. Ind. Microbiol. 22:543–555.

    CAS  Google Scholar 

  • Pritchard, P. H., 1981, Model ecosystems, in: Environmental Risk Analysis for Chemicals (R. A. Conway, ed.), pp. 257–353, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Pritchard, P. H., and Cripe, C. R., 1983, A microcosm system to model the fate and effects of p-cresol and other pollutants in lotic stream ecosystems, Limnol. Oceanogr. (submitted).

    Google Scholar 

  • Pritchard, P. H., and Van Veld, P., 1983, Evidence for biodegradation of /7-cresol in outdoor stream channels, J. Soc. Environ. Toxicol. Chem. (submitted).

    Google Scholar 

  • Pritchard, P. H., Bourquin, A. W., Frederickson, H. L., and Maziarz, T., 1979, System design factors affecting environmental fate studies in microcosms, in: Microbial Degradation of Pollutants in Marine Environments (A. W. Bourquin and P. H. Pritchard, eds.), pp. 251–272, U.S. Environmental Protection Agency, EPA-600/9–79–012.

    Google Scholar 

  • Pritchard, P. H., Van Veld, P., and Boyer, J. M., 1983a, Comparisons of the rate of p-cresol degradation in shake flasks, microcosms and field streams, Appl. Environ. Microbiol. (submitted).

    Google Scholar 

  • Pritchard, P. H., Connolly, J. P., Maziarz, T. M., and Bourquin, A. W., 1983b, Application of microcosm studies to verify chemical fate assessments: Comparison of the fate of methyl parathion in a sediment-water system. Water Res. (in press).

    Google Scholar 

  • Rubinstein, N. L, 1979, A benthic bioassay using time-lapse photography to measure the effect of toxicants on the feeding behavior of lugworms (Polychaeta: Arenicolidae), in: Marine Pollution: Functional Responses (W. B. Vernberg, A. Calabrese, F. Thurberg, and F. J. Vernberg, eds.), pp. 341–351, Academic Press, New York.

    Google Scholar 

  • Salt, G. W., 1979, A comment on the use of the term emergent properties, Am. Nat. 113:145–148.

    Google Scholar 

  • Sayler, G. S., Lund, L. C., Shiaris, M. P., Sherrill, T. W., and Perkins, R. E., 1979, Comparative effects of aroclor 1254 (polychorinated biphenyls) and phenanthrene on glucose uptake by freshwater microbial populations, Appl. Environ. Microbiol. 37:878–885.

    PubMed  CAS  Google Scholar 

  • Schindler, J. E., Waide, J. B., Waldron, M. C., Hains, J. J., Schreiner, S. P., Freedman, M. L., Benz, S. L., Pattigrew, D. R., Schissel, L. A., and Clark, P. J., 1980, A microcosm approach to the study of biogeochemical systems. 1. Theoretical rationale, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 192–203, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.

    Google Scholar 

  • Seitzinger, S., Nixon, S., Pilson, M., and Burke, S., 1980, Denitrification and nitrous oxide production in near-shore marine sediments, Geochim. Cosmochim. Acta 44:1853–1860.

    Article  CAS  Google Scholar 

  • Sethunathan, N., Siddaramapa, R., Rajaram, K. P., Barik, S., and Wahid, P. A., 1977, Parathion: Residues in soil and water.Residue Rev. 68:91–122.

    PubMed  CAS  Google Scholar 

  • Shaw, B., and Hopke, P. K., 1975, The dynamics of diaquat in a model eco-system. Environ. Lett. 8:325–335.

    Article  PubMed  CAS  Google Scholar 

  • Sikka, H. C., and Rice, C. P., 1973, Persistence of endothall in aquatic environment as determined by gas-liquid chromatography, J. Agric. Food Chem. 21:842–846.

    Article  PubMed  CAS  Google Scholar 

  • Simsiman, G. V., and Chesters, G., 1976, Persistence of diquat in the aquatic environment. Water Res. 10:105–112.

    Article  CAS  Google Scholar 

  • Smith, G. A., Nickels, J. S., Bobbie, R. J., Richards, N. L., and White, D. C., 1982, Effects of oil and gas well-drilling fluids on the biomass and community structure of microbiota that colonize sands in running seawater. Arch. Environ. Contam. Toxicol. 11:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Spain, J. C., Pritchard, P. H., and Bourquin, A. W., 1980, Effects of adaptation on biodegra-dation rates in sediment/water cores from estuarine and freshwater environments, Appl. Environ. Microbiol. 40:726–734.

    PubMed  CAS  Google Scholar 

  • Stay, F. S., 1980, Review of Aquatic Microcosms Techniques Used for Hazard Assessment of Potentially Toxic Compounds. U.S. Environmental Protection Agency, Environmental Research Laboratory, Corvallis, Oregon, Publication 052, 33 pp.

    Google Scholar 

  • Steel, J. H., and Menzel, D. W., 1978, The application of plastic enclosures to the study of pelagic marine biota, Rapp. P.V. Reun. Cons. Int. Explor. Mer. 173:7–12.

    Google Scholar 

  • Stout, J. D., 1980, The role of protozoa in nutrient cycling and energy flow, in: Advances in Microbial Ecology. Vol. 4 (M. Alexander, ed.), pp. 1–50, Plenum Press, New York.

    Google Scholar 

  • Straskrabova, V., and Fuksa, J., 1982, Diel changes in numbers and activities of bacterioplankton in a reservoir in relation to algal production, Limnol. Oceanogr. 27:660–672.

    Article  Google Scholar 

  • Tempest, D. W., 1970, The place of continuous culture in microbial research.Adv. Microbiol. Physiol. 4:223–250.

    Article  Google Scholar 

  • Titus, J. A., Parsons, J. E., and Pfister, R. M., 1980, Translocation of mercury and microbial adaptation in a model aquatic system, Bull. Environ. Contam. Toxicol. 25:456–464.

    Article  PubMed  CAS  Google Scholar 

  • Troussellier, M., and Legendre, P., 1981, A functional evenness index for microbial ecology, Microb. Ecol. 7:283–296.

    Article  Google Scholar 

  • Tsushimoto, G., Matsumura, F., and Sago, R., 1982, Fate of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in an outdoor pond and in a model aquatic ecosystem. Environ. Toxicol. Chem. 1:61–68.

    CAS  Google Scholar 

  • Tu, C. M., 1980, Influence of pesticides and some of the oxidized analogues on microbial populations, nitrification and respiration activities in soil. Bull Environ. Contam. Toxicol. 24:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Tu, C. M., and Miles, J. R. W., 1976, Interactions between insecticides and soil microbes, Residue Rev. 64:17–65.

    PubMed  CAS  Google Scholar 

  • Twinch, A. J., and Breen, C. M., 1981, The study of phosphorus and nitrogen fluxes in enriched isolation columns, Hydrobiologia 77:49–60.

    Article  CAS  Google Scholar 

  • Vanderborght, J. P., and Billen, G., 1975, Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification, Limnol. Oceanogr. 20:953–961.

    Article  CAS  Google Scholar 

  • Van Voris, P., O’Neill, R. V., Emanuel, W. R., and Shugart, H. H., 1980, Function complexity and ecosystem stability. Ecology 61:1352–1360.

    Article  Google Scholar 

  • Virtanen, M. T., Kihlstrom, M., Roos, A., and Kainulainen, H., 1982, Model ecosystem for environmental transport of xenobiotics, Arch. Environ. Contam. Toxicol. 11:410–424.

    Article  Google Scholar 

  • Vosjan, J. H., and Olanczuk-Neyman, K. M., 1977, Vertical distribution of mineralization processes in a tidal sediment, Neth. J. Sea Res. 11:14–23.

    Article  CAS  Google Scholar 

  • Waide, J. B., Schindler, J. E., Waldron, M. C., Hains, J. J., Schreiner, S. P., Freedman, M. L., Benz, S. L., Pettigrew, D. R., Schissel, L. A., and Clark, J. P., 1980, A microcosm approach to the study of biogeochemical systems: Responses of aquatic laboratory microcosms to physical, chemical and biological perterbations, in: Microcosms in Ecological Research (J. B. Giesy, ed.), pp. 204–223, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.

    Google Scholar 

  • Wangersky, P. J., 1978, Production of dissolved organic matter, in: Marine Ecology. Vol. IV (O. Kinne, ed.), pp. 115–220, John Wiley, New York.

    Google Scholar 

  • Warren, C. E., and Davis, G. E., 1971, Laboratory stream research: Objectives, possibilities and constraints, Amu. Rev. Ecol. Syst. 2:111–144.

    Article  Google Scholar 

  • Webb, J. E., and Theodor, J. L., 1972, Wave induced circulation in submerged sands, J. Mar. Biol. Assoc. U.K. 52:903–914.

    Article  Google Scholar 

  • Weiss, P. A., 1971, The basic concept of hierarchic systems, in: Hierarchically Organized Systems in Theory and Practice (P. A. Weiss, ed.), pp. 1–43, Hafner, New York.

    Google Scholar 

  • White, D. C., Bobbie, R. J., King, J. D., Nickels, J. S., and Amoe, P., 1979, Lipid analysis of the sediments for microbial biomass and community structure, in: Methodology for Biomass Determinations and Microbial Activities in Sediments (C. D. Litchfield and P. L. Seyfried, eds.), pp. 87–103, American Society for Testing and Materials, Philadelphia, Pennsylvania.

    Chapter  Google Scholar 

  • Widdus, R., Trudgill, P. W., and Turnell, D. C., 1971, Effects of technical chlordane on growth and energy metabolism of Streptococcus faecalis and Mycobacterium phlei: A comparison with Bacillus subtilis, J. Gen. Microbiol. 69:21–23.

    Google Scholar 

  • Wiebe, W. J., and Smith, D. F., 1977, Direct measurement of dissolved organic carbon release by plankton and incorporation by microheterotrophs. Mar. Biol. 42:213–223.

    Article  CAS  Google Scholar 

  • Wiegert, R. G., Christian, R. R., Gallagher, J. L., Hall, J. R., Jones, R. D., and Wetzel, R. L., 1975, A preliminary ecosystem model of a coastal Georgia Spartina marsh, Estuarine Res. 1:583–601.

    Google Scholar 

  • Witherspoon, J. P., Bondietti, E. A., Draggon, S., Taub, F., Pearson, P., and Trabokla, J. R., 1976, State-of-the-Art and Proposed Testing for Environmental Transport of Toxic Substances, U.S. Environmental Protection Agency, EPA-500/5–76–001, 105 pp.

    Google Scholar 

  • Witkamp, M., 1976, Microcosm experiments on element transfer.Int. J. Environ. Stud. 10:59–63.

    Article  CAS  Google Scholar 

  • Witkamp, M., and Ausmus, B. S., 1975, Processes in decomposition and nutrient transfer in forest systems, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 397–416, Blackwell, Oxford, England.

    Google Scholar 

  • Witt, J. M., and Gillett, J. W., 1977, Terrestrial Microcosms and Environmental Chemistry, Proceedings of Symposium. Corvallis, Oregon, National Science Foundation, NSF/RA 79–0026, 147 pp.

    Google Scholar 

  • Wolfe, N. L., Zepp, R. G., Gordon, J. A., Baughman, G. L., and Cline, D. M., 1977, Kinetics of chronical degradation of malathion in water. Environ. Sci. Tech. 11:88–93.

    Article  CAS  Google Scholar 

  • Wolfe, N. L., Zepp, R. G., Schlotzhaver, P., and Sink, M., 1982, Transformation pathways of hexachlorocyclopentadiene in the aquatic environment, Chemosphere 11:91–101.

    Article  CAS  Google Scholar 

  • Yockim, R. S., Isensee, A. S., and Weber, E. A., 1980, Behavior of trifluralin in aquatic model ecosystems, Bull. Environ. Contam. Toxicol. 24:134–141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Pritchard, P.H., Bourquin, A.W. (1984). The Use of Microcosms for Evaluation of Interactions between Pollutants and Microorganisms. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8989-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8989-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8991-0

  • Online ISBN: 978-1-4684-8989-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics