The Use of Microcosms for Evaluation of Interactions between Pollutants and Microorganisms

  • P. H. Pritchard
  • A. W. Bourquin
Part of the Advances in Microbial Ecology book series (AMIE, volume 7)


Experimental studies of the interactions within microbial communities have been a standard banner of microbial ecologists for many years. Their emphasis has been to bridge the gap between pure culture studies in the laboratory and field observations in natural ecosystems. Concern over the long-term effects of pollution on ecosystem processes has continuously challenged existing knowledge about the types, rates, and extents of these interactions, including their resistance and resilience to a large array of man-made perturbations.


Microbial Community Methyl Parathion Kinetic Expression Microcosm Study Field Calibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, W., 1966, Microcosm studies on estuarine waters. I. The replicability ofmicrocosms, J. Water Pollut. Control Fed. 38:258–270.PubMedGoogle Scholar
  2. Adler, D., Amdurer, M., and Santschi, P. H., 1980, Metal tracers in two marine microcosms: Sensitivity to scale and configuration, in: Microcosms in Ecological Research (J. P. Giesey, ed.), pp. 348–368, Department of Energy, Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.Google Scholar
  3. Ahmad, N., Walgenbach, D. D., and Sutler, G. R., 1979, Degradation rates of technical carbofuran and a granular formulation in four soils with known insecticide use history. Bull. Environ. Contam. Toxicol. 23:572–574.PubMedCrossRefGoogle Scholar
  4. Albright, L. J., and Wilson, E. M., 1974, Sublethal effects of several metallic salts-organic compound combinations upon the heterotrophic microflora of a natural water. Water Res. 8:101–105.CrossRefGoogle Scholar
  5. Anderson, J. R., 1978, Pesticide effects on non-target soil microorganisms, in: Pesticide Microbiology (I. R. Hill and S. J. L. Wright, eds.), pp. 313–359, Academic Press, London.Google Scholar
  6. Anderson, R. V., Elliott, E. T., McClellan, J. F., Coleman, D. C., Cole, C. V., and Hund, H. W., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes, Microb. Ecol. 4:361–371.CrossRefGoogle Scholar
  7. Atlas, R. M., Pramer, D., and Bartha, R., 1978, Assessment of pesticide effects on non-target soil microorganisms. Soil Biol. Biochem. 10:231–239.CrossRefGoogle Scholar
  8. Ausmus, B. S., Dodson, G. J., and Jackson, D. R., 1978, Behavior of heavy metals in forest microcosms. III. Effects on litter-soil carbon metabolism, Water Air Soil Pollut. 10: 19–26.CrossRefGoogle Scholar
  9. Babich, H., and G. Stotzky, 1980, Environmental factors that influence the toxicity of heavy metals and gaseous pollutants to microorganisms, Crit. Rev. Microbiol. 8:99–145.PubMedCrossRefGoogle Scholar
  10. Barsdate, R. J., Prentki, T. R., and Fenchel, T., 1974, Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers, Oikos 25:239–251.CrossRefGoogle Scholar
  11. Baughman, G. L., and Burns, L. A., 1980, Transport and transformation of chemicals: A perspective, in: Handbook of Environmental Chemistry. Vol. 2, Part A (O. Hutzinger, ed.), pp. 1–17, Springer-Verlag, Berlin.Google Scholar
  12. Bazin, M. J., Saunders P. T., and Prosser, J. I., 1976, Models of microbial interactions in the soil, Crit. Rev. Microbiol. 4:463–498.CrossRefGoogle Scholar
  13. Beers, J. R., Stewart, G. L., and Hoskins, K. D., 1977, Dynamics of micro-zooplankton populations treated with copper: Controlled ecosystem pollution experiment. Bull. Mar. Sci. 27:66–79.Google Scholar
  14. Beyers, R. J., 1964, The microcosm approach to ecosystem biology. Am. Biol. Teach. 26:491–497.Google Scholar
  15. Billen, G., 1982, Modeling the processes of organic matter degradation and nutrient recycling in sedimentary systems, in: Sediment microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 15–52, Academic Press, New York.Google Scholar
  16. Billen, G., Joiris, C., and Wollast, R., 1974, A bacterial methyl mercury-mineralizing activity in river sediments. Water Res. 8:219–255.CrossRefGoogle Scholar
  17. Bisogni, J. J., and Lawrence, A. W., 1975, Kinetics of mercury methylation in aerobic and anaerobic aquatic environments, J. Water Pollut. Control Fed. 47:135–152.PubMedGoogle Scholar
  18. Blau, G. E., and Neely, W. B., 1975, Mathematical model building with an application to determine the distribution of Dursban insecticide added to a simulated ecosystem, Adv. Ecol. Res. 9:133–163.CrossRefGoogle Scholar
  19. Blum, J. E., and Bartha, R., 1980, Effect of salinity on methylation of mercury. Bull. Environ. Contam. Toxicol. 25: 404–408.PubMedCrossRefGoogle Scholar
  20. Bobbie, R. J., and White, D. C., 1980, Characterization of benthic microbial community structure by high resolution gas chromatography of fatty acid methyl esters, Appl. Environ. Microbiol. 39:1212–1222.PubMedGoogle Scholar
  21. Bott, T. L., and Rogenmuser, K., 1978, Effects of No. 2 fuel oil, Nigerian crude oil, and used crankcase oil on attached algal communities: Acute and chronic toxicity of water-soluble constitutents, Appl. Environ. Microbiol. 36:673–682.PubMedGoogle Scholar
  22. Bott, T. L., Preslan, J., Finlay, J., and Brunker, R., 1976, The use of flowing-water microcosms and ecosystem streams to study microbial degradation of leaf litter and nitrilotriacetic acid. Dev. Ind. Microbiol. 18:171–184.Google Scholar
  23. Bourquin, A. W., and Pritchard, P. H. (eds.), 1979, Workshop: Microbial Degradation of Pollutants in Marine Environments. U.S. Environmental Protection Agency, EPA-600/9–72-012, Gulf Breeze, Florida, 552 pp.Google Scholar
  24. Bourquin, A. W., Walker, W. W., and Pritchard, P. H., 1981, Screening test to estimate the degradation rates of toxicants in estuarine environments. Am. Soc. Microbiol, (abstr.). p. 276.Google Scholar
  25. Boyle, T. P., Robinson-Wilson, E. F., Petty, J. D., and Weber, W., 1980, Degradation of pentachlorophenol in simulated lentic environment, Bull. Environ. Contam. Toxicol. 24:177–184.PubMedCrossRefGoogle Scholar
  26. Branson, D. R., 1978, Predicting the fate of chemicals in the aquatic environment from laboratory data, in: Estimating the Hazard of Chemical Substances to Aquatic Life (J. Cairns, K. L. Dickson, and A. W. Maki, eds.), pp. 55–70, ASTM STP 657.CrossRefGoogle Scholar
  27. Brockway, D. L., Hill, J., Maudsley, J., and Lassiter, R. R., 1979, Development, replicability and modeling of naturally derived microcosms, Int. J. Environ. Stud. 13:149–158.CrossRefGoogle Scholar
  28. Bull, A. T., 1980, Biodegradation: Some attitudes and strategies of microorganisms and microbiologists, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 107–136, Academic Press, New York.Google Scholar
  29. Burney, C. M., Johnson, K. M., and Sieburth, J. McN., 1981, Diel flux of dissolved carbohydrate in a salt marsh and a simulated estuarine ecosystem, Mar. Biol. 63:175–187.CrossRefGoogle Scholar
  30. Burns, L. A., Cline, D. M., and Lassiter, R. L., 1982, Exposure Analysis Modeling System (EXAMS): User Manual and System Documentation. U.S. Environmental Protection Agency, EPA-600/3–82-023, 316 pp.Google Scholar
  31. Cairns, J., 1981, Biological Monitoring. VI. Future needs, Water Res. 15:941–952.CrossRefGoogle Scholar
  32. Cappenberg, T. E., 1974, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations, Antonie van Leeuwenhoek. J. Microbiol. Serol. 40:285–295.CrossRefGoogle Scholar
  33. Case, J. N., 1978, The engineering aspects of capturing a marine environment, CEPEX and others, Rapp. P. V. Renn. Cons. Int. Explor. Mer. 173:49–58.Google Scholar
  34. Chapman, A. W., and Atkinson, D. E., 1977, Adenine nucleotide concentrations and turnover rates, their correlation with biological activity in bacteria and yeast, Adv. Microbiol. Physiol. 15:253–306.CrossRefGoogle Scholar
  35. Charyulu, P. B. B., Roamakrishna, C., and Rao, V. R., 1980, Effect of 2-aminobenzimidazole on nitrogen fixers from flooded soil and their nitrogenase activity, Bull. Environ. Contam. Toxicol. 25:482–486.PubMedCrossRefGoogle Scholar
  36. Chatarpaul, L., Robinson, J. B., and Kaushik, N. K., 1979, Role of tubificid worms on nitrogen transformations in stream sediment, J. Fish. Res. Board Can. 36:673–678.CrossRefGoogle Scholar
  37. Clesceri, L. S., Park, P. A., and Bloomfield, J. A., 1977, General model of microbial growth and decomposition in aquatic ecosystem, Appl. Environ. Microbiol 33:1047–1058.PubMedGoogle Scholar
  38. Cleveland, M. E., 1983, Environmental factors affecting the sorption of pesticides to aquatic sediments, M.S. thesis. University of West Florida, Pensacola, 27 pp.Google Scholar
  39. Cole, C. v., Elliott, E. T., Hunt, H. W., and Coleman, D. C., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorus transformations, Microb. Ecol. 4:381–387.CrossRefGoogle Scholar
  40. Cole, L. K., Metcalf, R. L., and Sanborn, J. R., 1976, Environmental fate of insecticides in terrestrial model ecosystems. Int. J. Environ. Stud. 10:7–14.CrossRefGoogle Scholar
  41. Coleman, D. C., Cole, C. V., Hunt, H. W., and Klein, D. A., 1978a, Trophic interactions in soils as they affect energy and nutrient dynamics: Introduction, Microb. Ecol. 4:345–349.CrossRefGoogle Scholar
  42. Coleman, D. C., Anderson, R. V., Cole, C. V., Elliott, E. T., Woods, L., and Campion, M. K., 1978b, Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon, Microb. Ecol. 4:373–380.CrossRefGoogle Scholar
  43. Colwell, P. R., 1978, Toxic effects of pollutants on microorganisms, in: Principles of Ecotoxicology (G. C. Butler, ed.), pp. 275–295, John Wiley, New York.Google Scholar
  44. Connolly, J. P., and O’Connor, D. J., 1982, WASTOX: Preliminary Estuary and Stream Version Documentation, Annual Report. U.S. Environmental Protection Agency cooperative agreement CR807827–02, Gulf Breeze, Florida, 96 pp.Google Scholar
  45. Cooke, G. D., 1967, The pattern of autotrophic succession in laboratory microcosms. Bioscience 17:717–721.Google Scholar
  46. Cooke, G. D., 1974, Aquatic laboratory microsystems and communities, in: Structure and Function of Fresh Water Microbial Communities (J. Cairns, ed.), pp. 47–86, Virginia Polytechnic Institute, Blacksburg.Google Scholar
  47. Cooper, W., Stout, J., and Boling, R., 1982, Fate and Effects of p-Cresol in Outdoor Stream Channels, Annual Report. U.S. Environmental Protection Agency cooperative agreement CR80755010, U.S. EPA Environmental Research Laboratory, Duluth, Minnesota, 86 pp.Google Scholar
  48. Craib, J. S., 1965, A sampler for taking short undisturbed marine cores, J. Cons. Cons. Perm. Int. Explor. Mer. 30:34–39.Google Scholar
  49. Cummins, K. W., 1974, Structure and function of stream ecosystems. Bioscience 24: 631–641.Google Scholar
  50. Davies, J. M., and Gamble, J. C., 1979, Experiments with large enclosed ecosystems, Philos. Trans. R. Soc. London Ser. B. 286:523–574.CrossRefGoogle Scholar
  51. DePinto, J. V., Guminiak, R. F., Howell, R. S., and Edzwald, J. K., 1980, Use of microcosms to evaluate acid lake recovery techniques, in: Microcosms in Ecological Research (J. P. Giesy, ed.). Department of Energy Symposium Ser. No. 52 (conf-781101), pp. 562–582, NTIS, Springfield, Virginia.Google Scholar
  52. Draggan, S., 1977, Effects of substrate type and arsenic dosage level on arsenic behavior in grassland microcosms. I. Preliminary results on 74As transport, in: Terrestrial Microcosms and Environmental Chemistry (J. M. Witt and J. W. Gillet, eds.), pp. 102–110, National Science Foundation, NSF/RA 79–0026.Google Scholar
  53. Draggan, S., 1979, The role of microcosms in ecological research. Int. J. Environ. Stud. 13:83–182.CrossRefGoogle Scholar
  54. Dudzik, M., Harte, J., Jassby, A., Lapan, E., Levy, D., and Rees, J., 1979, Some considerations in the design of aquatic microcosms for plankton studies. Int. J. Environ. Stud. 13:125–130.CrossRefGoogle Scholar
  55. Edberg, N., and Hofsten, B., 1973, Oxygen uptake of bottom sediments studied in situ and in the laboratory. Water Res. 7:1285–1294.CrossRefGoogle Scholar
  56. Edwards, R. W., and Rolley, H. L. J., 1965, Oxygen consumption of river muds, J. Ecol. 53:1–19.CrossRefGoogle Scholar
  57. Elliott, E. T., Cole, C. V., Coleman, D. C., Anderson, R. V., Hunt, H. W., and McClellan, J. F., 1979, Amoebal growth in soil microcosms, a model system of Ci N and P trophic dynamics, Int. J. Environ. Stud. 13:169–174.CrossRefGoogle Scholar
  58. Elmgren, R., Vargo, G. A., Grassle, J. F., Grassle, J. P., Heinle, D. R., Langlois, G., and Vargo, S. L., 1980, Trophic interactions in experimental marine ecosystem perturbed by oil, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 779–800, U.S. Department of Energy Symposium Ser. 52 (CONF-781101), NTIS, Springfield, Virginia.Google Scholar
  59. Einer, J. K., Wildish, D. J., and Johnston, D. W., 1981, Fate of sprayed formulated aminocarb in freshwater, Chemosphere 10:1025–1034.CrossRefGoogle Scholar
  60. Falco, J. W., Sampson, K. T., and Carsel, R. F., 1977, Physical modeling of pesticide degradation, Dev. Ind. Microbiol. 18:193–202.Google Scholar
  61. Fenchel, T. M. and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson, ed.), pp. 285–299, Blackwell, Oxford, England.Google Scholar
  62. Flint, R.. W., and Goldman, C. R., 1975, The effects of a benthic grazer on the primary productivity of the littoral zone of Lake Tahoe, Limnol. Oceanogr. 20:935–944.CrossRefGoogle Scholar
  63. Flint, R. W., Duke, T. W., and Kalke, R. D., 1978, Benthos investigations: Sediment boxes or natural bottom. Bull. Environ. Contam. Toxicol. 28:257–265.CrossRefGoogle Scholar
  64. Focht, D. D., and Verstraete, W., 1977, Biochemical ecology of nitrification and denitrification, in: Advances in Microbial Ecology. Vol. 1 (M. Alexander, ed.), pp. 135–214, Plenum Press, New York.Google Scholar
  65. Fry, J. C., 1982, Interaction between bacteria and benthic invertebrates, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 171–201, Academic Press, New York.Google Scholar
  66. Fry, J. C., and Ramsey, A. J., 1977, Changes in the activity of epiphytic bacteria of Elodea canadensis and Char vulgaris flowing treatment with the herbicide paraquat, Limnol. Oceanogr. 22:556–561.CrossRefGoogle Scholar
  67. Gee, J. H., and Bartnik, V. G., 1969, Simple stream tank simulating a rapids environment, J. Fish. Res. Board Can. 26:2227–2230.CrossRefGoogle Scholar
  68. Gerike, P., and Fischer, W. K., 1979, A correlation study of the biodegradability determinations with various chemicals in various tests, Ecotoxicol. Environ. Safety 3:159–173.PubMedCrossRefGoogle Scholar
  69. Giddings, J. M., and Eddleman, G. K., 1977, The effects of microcosm size and substrate type on aquatic microcosm behavior and arsenic transport. Arch. Environ. Contam. Toxicol. 6:491–505.CrossRefGoogle Scholar
  70. Giddings, J. M., and Eddleman, G. K., 1978, Photosynthesis/respiration ratios in aquatic microcosms under arsenic stress, Water Air Soil Pollut. 9:207–212.CrossRefGoogle Scholar
  71. Giddings, J. M., Walton, B. T., Eddleman, G. K., and Olson, K. G., 1979, Transport and fate of anthracene in aquatic microcosms, in: Workshop: Microbial Degradation of Pollutants in Marine Environments (A. W. Bourquin and P. H. Pritchard, eds.), pp. 312–320, U.S. Environmental Protection Agency, EPA-600/9–79–012.Google Scholar
  72. Giesy, J. P., 1978, Cadmium inhibition of leaf decomposition in an aquatic microcosm, Chemosphere 6:467–475.CrossRefGoogle Scholar
  73. Giesy, J. P. (ed.), 1980, Microcosms in Ecological Research. Symposium, Savannah River Ecology Laboratory, Augusta, Georgia, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia, 1110 pp.Google Scholar
  74. Gillett, J. W., and Gile, J. D., 1976, Pesticide fate in terrestrial laboratory ecosystems, Int. J. Environ. Stud. 10:15–22.CrossRefGoogle Scholar
  75. Goodyear, C. P., Boyd, C. E., and Beyers, R. J., 1972, Relationships between primary productivity and mosquitofish (Gambusia affinis) production in large microcosms, Limnol. Oceanogr. 17:445–450.CrossRefGoogle Scholar
  76. Goulder, R., Blanchard, A. S., Sanderson, P. L., and Wright, B., 1978, A note on the recognition of pollution stress in populations of estuarine bacteria, J. Appl. Bacteriol. 46:285–289.Google Scholar
  77. Goulder, R., Blanchard, A. S., Sanderson, P. L., and Wright, B., 1980, Relationships between heterotrophic bacteria and pollution in an industrial estuary, Water Res. 14:591–601.CrossRefGoogle Scholar
  78. Graetz, D. A., Chesters, G., Daniel, T. C., Newland, L. W., and Lee, G. B., 1970, Parathion degradation in lake sediments, J. Water Pollut. Control Fed. 2:R76-R94.Google Scholar
  79. Graetz, D. A., Keeney, D. R., and Aspiras, R. B., 1973, Eh status of lake sediment-water systems in relation to nitrogen transformations, Limnol. Oceanogr. 18:908–1017.CrossRefGoogle Scholar
  80. Greaves, M. P., Davies, H. A., Marsh, J. A. P., and Wingfield, G. L, 1976, Herbicides and soil microorganisms, Crit. Rev, Microbiol. 5:1–38.CrossRefGoogle Scholar
  81. Griffiths, R. P., Caldwell, B. A., Broich, W. A., and Morita, R. Y., 1982, Long-term effects of crude oil on microbial processes in subarctic marine sediments: Studies on sediments amended with organic nutrients, Mar. Pollut. Bull. 13:273–278.CrossRefGoogle Scholar
  82. Hammonds, A. S., 1981, Methods for Ecological Toxicology: A Critical Review of Laboratory Multispecies Tests. U.S. Environmental Protection Agency, EPA-56-/11–80–026, 307 pp.Google Scholar
  83. Hansen, J. I., Henriksen, K., and Blackburn, T. H., 1981, Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments, Microb. Ecol. 7:297–304.CrossRefGoogle Scholar
  84. Hansen, S. R., and Garton, R. R., 1982, The effects of diflubenzuron on a complex laboratory stream community. Arch. Environ. Contam. Toxicol. 11:1–10.PubMedCrossRefGoogle Scholar
  85. Hardy, J. T., and Valett, M., 1981, Natural and microcosm phytoneuston communities of Sequin Bay, Washington, Estuarine Coastal Shelf Sci. 12:3–12.CrossRefGoogle Scholar
  86. Hargrave, B. T., 1970, The effect of a deposit-feeding amphipod on;he metabolism of benthic microflora, Limnol. Oceanogr. 15:21–30.Google Scholar
  87. Hargrave, B. T., 1976, The central role of invertebrate forces in sediment decomposition, in: Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 301–321, Blackwell, Oxford, England.Google Scholar
  88. Harris, W. F., 1980, Microcosms as Potential Screening Tools for Evaluating Transport and Effects of Toxic Substances, U.S. Environmental Protection Agency, EPA-600/3–80–092, 379 pp.Google Scholar
  89. Harrison, P. G., 1977, Decomposition of macrophyte detritus in seawater: Effects of grazing by amphipods, Oikos 28:165–169.CrossRefGoogle Scholar
  90. Harrison, P. G., and Mann, K. H., 1975, Detritus formation from eelgrass (Zostera marina): The relative effects of fragmentation, leaching and decay, Limnol. Oceanogr. 20:924–934.CrossRefGoogle Scholar
  91. Harte, J., Levy, D., Rees, J., and Saegebarth, E., 1980, Making microcosms an effective assessment tool, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 105–137, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.Google Scholar
  92. Harty, B., and McLachlan, A., 1982, Effects of water-soluble fractions of crude oil and dispersants on nitrate generation by sandy beach microflora. Mar. Pollut. Bull. 13:287–291.CrossRefGoogle Scholar
  93. Hauxhurst, J. D., Kaneko, T., and Atlas, R. M., 1981, Characteristics of bacterial communities in the Gulf of Alaska, Microb. Ecol. 7:167–182.CrossRefGoogle Scholar
  94. Heath, R. T., 1979, Holistic study of an aquatic microcosm: Theoretical and practical implications, Int. J. Environ. Stud. 13:87–93.CrossRefGoogle Scholar
  95. Henriksen, K., 1980, Measurement of in situ rates of nitrification in sediment, Microb. Ecol. 6:329–337.CrossRefGoogle Scholar
  96. Henriksen, K., Hansen, J. L, and Blackburn, T. H., 1980, The influence of benthic infauna on exchange rates of inorganic nitrogen between sediment and water, Ophelia Suppl. 1:249–256.Google Scholar
  97. Henriksen, K., Hansen, J. L, and Blackburn, T. H., 1981, Rates of nitrification, distribution of nitrifying bacteria and nitrate fluxes in different types of sediment from Danish waters, Mar. Biol. 61:299–304.CrossRefGoogle Scholar
  98. Herzberg, M. A., Klein, A., and Coleman, D. C., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. IL Physiological responses of selected rhizosphere bacteria, Microb. Ecol 4:351–359.CrossRefGoogle Scholar
  99. Hill, J., 1979, Mathematical modeling of pesticides in the environment: Current and future developments, J. Environ. Systems 9:99–107.Google Scholar
  100. Hill, J., and Wiegert, R. G., 1980, Microcosms in ecological modeling, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 138–163, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.Google Scholar
  101. Hopkinson, C. S., and Day, J. W., 1977, A model of the Barataria Bay salt marsh ecosystem, in:Ecosystem Modeling in Theory and Practice (A. S. Hall and J. W. Day, eds.), pp. 236–265, Wiley-Interscience, New York.Google Scholar
  102. Howard, P. H., Saxena, J., and Sikka, H., 1978, Determining the fate of chemicals. Environ. Sci. Technol. 12:398–407.CrossRefGoogle Scholar
  103. Howes, B. C., Howarth, R. W., Teal, J. M., and Valiela, I., 1981, Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production, Limnol. Oceanogr. 26:350–360.CrossRefGoogle Scholar
  104. Hsu, T. S., and Bartha, R., 1979, Accelerated mineralization of two organophosphate insecticides in the rhizosphere, Appl. Environ. Microbiol 37:36–41.PubMedGoogle Scholar
  105. Hylleberg, J., and Henriksen, K., 1980, The central role of bioturbation in sediment mineralization and element cycling, Ophelia Suppl. 1:1–16.Google Scholar
  106. Isensee, A. R., 1976, Variability of aquatic model ecosystem-derived data. Int. J. Environ. Stud. 10:35–41.CrossRefGoogle Scholar
  107. Isensee, A. R., Kearney, P. C., Woolson, E. A., Jones, G. E., and Williams, V. P., 1973, Distribution of alkyl arsenicals in the model ecosystem. Environ. Sci. Technol. 7:841–845.CrossRefGoogle Scholar
  108. Jackson, D. R., Washburne, C. D., and Ausmus, B. S., 1977, Loss of Ca and NO3-N from terrestrial microcosms as an indicator of soil pollution. Water Air Soil Pollut. 8:279–284.CrossRefGoogle Scholar
  109. Jackson, D. R., Ausmus, B. S., and Levin, M., 1979, Effects of arsenic on nutrient dynamics of grassland microcosms and field plots, Water Air Soil Pollut. 11:13–21.CrossRefGoogle Scholar
  110. Jahnke, R. A., Emerson, S. R., and Murray, J. W., 1982, A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments, Limnol. Oceanogr. 27:610–623.CrossRefGoogle Scholar
  111. Jassby, A., Dudzik, M., Rees, J., Lapan, E., Levy, D., and Harte, J., 1977a, Production Cycles in Aquatic Microcosms. U.S. Environmental Protection Agency, EPA-600/7–77–077, 51 pp.CrossRefGoogle Scholar
  112. Jassby, A., Rees, J., Dudzik, M., Levy, D., Lapan, E., and Harte, J., 1977b, Trophic Structure Modifications by Planktovorous Fish in Aquatic Microcosms. U.S. Environmental Protection Agency, EPA-600/7–77–096, 18 pp.Google Scholar
  113. Jensen, S., and Jernelov, A., 1969, Biological methylation of mercury in aquatic organisms, Nature (London) 223:753–754.CrossRefGoogle Scholar
  114. Jernelov, A., 1978, Release of methyl mercury from sediments with layers containing inorganic mercury at different depths, Limnol. Oceanogr. 15:958–960.CrossRefGoogle Scholar
  115. Jones, J. G., 1979, Microbial nitrate reduction in freshwater sediments, J. Gen. Microbiol. 115:27–35.Google Scholar
  116. Jones, J. G., 1982, Activities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 107–145, Academic Press, New York.Google Scholar
  117. Jones, R. D., and Hood, N. A., 1980, The effects of organophosphorus pesticides on estuarine ammonia oxidizers, J. Can. Microbiol. 26:1296–1299.CrossRefGoogle Scholar
  118. Juengst, F. W., and Alexander, M., 1975, Effect of environmental conditions on the degradation of DDT in model marine ecosystems, Mar. Biol. 33:1–6.CrossRefGoogle Scholar
  119. Karickhoff, S. W., Brown, D. S., and Scott, T. A., 1979, Sorption of hydrophobic pollutants on natural sediments, Water Res. 13:241–247.CrossRefGoogle Scholar
  120. Katan, J., Fuhremann, T. W., and Lichtenstein, E. P., 1976, Binding of [14C]Parathion in soil: A reassessment of pesticide persistence, Science 193:891–894.PubMedCrossRefGoogle Scholar
  121. Kloskowski, R., Schevnert, I., Klein, W., and Forte, F., 1981, Laboratory screening of distribution, conversion and mineralization of chemicals in the soil-plant-system and comparison to outdoor experimental data, Chemosphere 10:1089–1100.CrossRefGoogle Scholar
  122. Kremer, J. N., 1979, An analysis of the stability characteristics of an estuarine ecosystem model, in: Marsh-Estuarine Systems Simulations (R. F. Dame, ed.), pp. 189–206, University of South Carolina Press, Columbia.Google Scholar
  123. Larsson, V., and Hastrom, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol 52:199–206.CrossRefGoogle Scholar
  124. Lassiter, R. R., 1975, Modeling the Dynamics of Biological and Chemical Components of Aquatic Ecosystems. U.S. Environmental Protection Agency, EPA-660/3–75–012, 54 pp.Google Scholar
  125. Lassiter, R. R., 1979, Microcosms as ecosystem for testing ecological models, in: State-of-the Art in Ecological Modeling. Vol. 7 (S. E. Jorgensen, ed.), pp. 127–161, Pergamon Press, Oxford.Google Scholar
  126. Lassiter, R. R., Baughman, G. L., and Burns, L. A., 1978, Fate of toxic organic substances in the aquatic environment, in: State-of-the-Art in Ecological Modeling. Vol. 7 (S. E. Jorgensen, ed.), pp. 219–295, Pergamon Press, Oxford.Google Scholar
  127. Lauff, G. H., and Cummins, K. W., 1964, A model stream for studies in lotic ecology. Ecology 45:188–191.CrossRefGoogle Scholar
  128. Lee, R. F., and Ryan, C., 1979, Microbial degradation of organochlorine compounds in estuarine waters and sediments, in: Microbial Degradation of Pollutants in Marine Environments (A. W. Bourquin and P. H. Pritchard, eds.), pp. 443–450, U.S. Environmental Protection Agency, EPA-600/9–79–012.Google Scholar
  129. Lee, R. F., Gardner, W. S., Anderson, J. W., Blaylock, J. W., and Barwell-Clarke, J., 1978, Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. Environ. Sci. Technol. 12:832–838.CrossRefGoogle Scholar
  130. Levandowsky, M., 1977, Multispecies cultures and microcosms, in: Marine Ecology. Vol. 111 (O. Kinne, ed.), pp. 1399–1452, John Wiley, New York.Google Scholar
  131. Levin, S. A., 1982, Newprospectives in Ecotoxicology, Workshop Report. Ecosystems Research Center, Cornell University, Ithaca, New York, 125 pp.Google Scholar
  132. Lewis, D. L., and Holm, H. W., 1981, Rates of transformation of methyl parathion and diethyl phthalate by aufwuchs microorganisms, Appl. Environ. Microbiol. 42:698–703.PubMedGoogle Scholar
  133. Lichtenstein, E. P., Liang, T. T., and Fuhremann, T. W., 1978, A compartmentalized microcosm for studying the fate of chemicals in the environment, J. Agric. Food, Chem. 26:948–953.CrossRefGoogle Scholar
  134. Liu, D., Thomson, K., and Stachan, W. M., 1980, Biodegradation of carbaryl in simulated aquatic environments. Bull. Environ. Contam. Toxicol. 27:412–417.CrossRefGoogle Scholar
  135. Liu, D., Thomson, K., and Strachen, W. M., 1981, Biodegradation of pentachlorophenol in a simulated aquatic environment, Bull. Environ. Contam. Toxicol. 26:85–90.PubMedCrossRefGoogle Scholar
  136. Lopez, G. R., Levinton, J. S., and Slobodkin, L. B., 1977, The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community, Oecologia (Berlin) 30:111–127.Google Scholar
  137. Maki, A. W., 1980, Evaluation of toxicant effects on structure and function of model stream communities: Correlation with natural effects, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 583–609, Department of Energy Symposium Ser. 52 (Conf-781101), NTIS.Google Scholar
  138. Mann, K. H., 1979, Qualitative aspects of estuarine modeling, in: Marsh-Estuarine Systems Simulation (R. F. Dame, ed.), pp. 207–220, University of South Carolina Press, Columbia.Google Scholar
  139. Marshall, W. K., and Roberts, J. R., 1971, Simulation modeling of the distribution of pesticides in ponds, Nat. Res. Counc. Can. NRCC/CNRR 16073 2:253–278.Google Scholar
  140. Martin, Y. P., and Bianchi, M. A., 1980, Structure, diversity and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton, Microb. Ecol. 5:265–279.CrossRefGoogle Scholar
  141. McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology (R. O. Brinkhurst and D. G. Cook, eds.), pp. 253–317, Plenum Press, New York.CrossRefGoogle Scholar
  142. Mclntire, C. D., 1964, Primary production in laboratory streams, Limnol. Oceanogr. 9:92–102.CrossRefGoogle Scholar
  143. Mclntire, C. D., 1965, Structural characteristics of benthic algal communities in laboratory streams, Limnol. Oceanogr. 9:92–102.CrossRefGoogle Scholar
  144. Mclntire, C. D., 1966, Some factors affecting respiration of periphyton communities in lotic environments, Ecology 47:918–930.CrossRefGoogle Scholar
  145. Mclntire, C. D., 1978, Periphyton assemblages in laboratory streams, in: River Ecology (B. A. Whitton, ed.), pp. 403–430, University of California Press, Berkeley.Google Scholar
  146. Mclntire, C. D., Colby, J. A., and Hall, J. D., 1975, The dynamics of small lotic ecosystems: A modeling approach, Verh. Int. Verein. Limnol. 19:1599–1609.Google Scholar
  147. McKinley, K. R., and Wetzel, R. G., 1979, Photolithotrophy, photoheterotrophy and chemoheterotrophy: Patterns of resource utilization on an annual and a diurnal basis within pelagic microbial communities, Microb. Ecol. 5:1–15.CrossRefGoogle Scholar
  148. Mehran, M., and Tanji, K. K., 1974, Computer modeling of nitrogen transformations in soil, J. Environ. Qual. 3:391–410.CrossRefGoogle Scholar
  149. Metcalf, R. L., Sangha, G. K., and Kapoor, I. P., 1971, Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5:709–713.CrossRefGoogle Scholar
  150. Metcalf, L., Kapoor, P., Schuth, C. K., and Sherman, P., 1973, Model ecosystem studies of the environmental fate of six organochlorine pesticides.Environ. Health Perspect. 4:35–44.PubMedCrossRefGoogle Scholar
  151. Nash, R. G., and Beall, M. L., 1977, A microagroecosystem to monitor the environmental fate of pesticides, in: Terresterial Microcosms and Environmental Chemistry (J. M. Witt and J. W. Gillett, eds.), pp. 86–94, National Science Foundation, NSF/RA 79–0026.Google Scholar
  152. Nash, R. G., Beall, M. L., and Harris, W. G., 1977, Toxaphene and 1,1,1,-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) losses from cotton in an agroecosystem chamber, J. Agric. Food Chem. 25:336–341.PubMedCrossRefGoogle Scholar
  153. Nelson, J. D., and Colwell, R. R., 1975, The ecology of mercury-resistant bacteria in Chesapeake Bay, Microb. Ecol. 2:191–218.Google Scholar
  154. Nixon, S. W., 1981, Remineralization and nutrient cycling in coastal marine ecosystems, in: Estuaries and Nutrients (B. J. Neilson and L. E. Cronin, eds.), pp. 111–138, Humana Press, Clifton, New Jersey.CrossRefGoogle Scholar
  155. Nixon, S. W., and Kremer, J. N., 1977, Narragansett Bay—The development of a composite simulation model for a New England estuary, in: Ecosystem Modeling in Theory and Practice (C. A. S. Hall and J. W. Day, eds.), pp. 622–673, John Wiley, New York.Google Scholar
  156. Nixon, S. W., Oviatt, C. A., Kremer, J. N., and Perez, K., 1979, The use of numerical models and laboratory microcosms in estuarine ecosystem analysis—simulations of a winter phytoplankton bloom, in: Marsh-Estuarine Systems Simulations (R. F. Dame, ed.), pp. 165–188, University of South Carolina Press, Columbia.Google Scholar
  157. Odum, E. P., 1969, The strategy of ecosystem development, Science 164:262–270.Google Scholar
  158. Olanczuk-Neyman, K. M., and Vosjan, J. H., 1977, Measuring respiratory electron-transportsystem activity in marine sediments, Neth. J. Sea Res. 11:1–13.CrossRefGoogle Scholar
  159. Olsen, B. H., and Cooper, R. C., 1976, Comparison of aerobic and anaerobic methylation of mercury chloride by San Fransico Bay sediments. Water Res. 10:113–116.CrossRefGoogle Scholar
  160. O’Neill, R. B., Ausmus, B. S. Jackson, D. R., Van Hook, R. I., Van Voris, P., Washburne, C., and Watson, A. P., 1977, Monitoring terrestrial ecosystems by analysis of nutrient export, Water Air Soil Pollut. 8:271–277.CrossRefGoogle Scholar
  161. Orndorff, S. A., and Colwell, R. R., 1980, Effect of Kepone on estuarine microbial activity, Microb. Ecol. 6:357–368.CrossRefGoogle Scholar
  162. Painter, H. A., 1970, A review of literature of inorganic nitrogen metabolism in microorganisms, Water Res. 4:393.CrossRefGoogle Scholar
  163. Pamatmat, M. M., 1971, Oxygen consumption by the seabed. IV. Shipboard and laboratory experiments, Limnol. Oceanogr. 16:536–550.CrossRefGoogle Scholar
  164. Pamatmat, M. M., and Bhagwat, A. M., 1973, Anaerobic metabolism in Lake Washington sediments, Limnol. Oceanogr. 18:611–627.CrossRefGoogle Scholar
  165. Paris, D. F., Steen, W. C., Baughman, G. L., and Barnett, J. T., 1981, Second-order model to predict microbial degradation of organic compounds in natural waters, Appl. Environ. Microbiol. 41:603–609.PubMedGoogle Scholar
  166. Patten, B. C., and Witkamp, M., 1967, Systems analysis of 134cesium kinetics in terrestrial microcosms. Ecology 48:813–824.CrossRefGoogle Scholar
  167. Perez, K. T., Morrison, G. M., Lackie, N. F., Oviatt, C. A., Nixon, S. W., Buckley, B. A., and Heltshe, J. F., 1977, The importance of physical and biotic scaling to the experimental simulation of a coastal marine ecosystem, Helgol. Wis. Meeresunters. 30:144–162.CrossRefGoogle Scholar
  168. Peterson, R. C., and Cummins, K. W., 1974, Leaf processing in a woodland stream.Fresh Water Biol 4:343–368.CrossRefGoogle Scholar
  169. Pfaender, F. K., and Alexander, M., 1972, Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities, Agric. Food Chem. 20:842–846.CrossRefGoogle Scholar
  170. Pilson, M. E. Q., Oviatt, C. A., Vargo, G. A., and Vargo, S. L., 1979, Replicability of MERL microcosms: Initial observations, in: Advances in Marine Environmental Research (F. S. Jacoff, ed.), U.S. Environmental Protection Agency, EPA-600/9–79–035, 409 pp.Google Scholar
  171. Pilson, M. E. Q., Oviatt, C. A., and Nixon, S. W., 1980, Annual nutrient cycles in a marine microcosm, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 753–778, U.S. Department of Energy Symposium Ser. 52 (Conf-7811–1), NTIS, Springfield, Virginia.Google Scholar
  172. Portier, R. J., and Meyers, S. P., 1981, Chitin transformation and pesticide interactions in a simulated aquatic microenvironmental system. Dev. Ind. Microbiol. 22:543–555.Google Scholar
  173. Pritchard, P. H., 1981, Model ecosystems, in: Environmental Risk Analysis for Chemicals (R. A. Conway, ed.), pp. 257–353, Van Nostrand Reinhold, New York.Google Scholar
  174. Pritchard, P. H., and Cripe, C. R., 1983, A microcosm system to model the fate and effects of p-cresol and other pollutants in lotic stream ecosystems, Limnol. Oceanogr. (submitted).Google Scholar
  175. Pritchard, P. H., and Van Veld, P., 1983, Evidence for biodegradation of /7-cresol in outdoor stream channels, J. Soc. Environ. Toxicol. Chem. (submitted).Google Scholar
  176. Pritchard, P. H., Bourquin, A. W., Frederickson, H. L., and Maziarz, T., 1979, System design factors affecting environmental fate studies in microcosms, in: Microbial Degradation of Pollutants in Marine Environments (A. W. Bourquin and P. H. Pritchard, eds.), pp. 251–272, U.S. Environmental Protection Agency, EPA-600/9–79–012.Google Scholar
  177. Pritchard, P. H., Van Veld, P., and Boyer, J. M., 1983a, Comparisons of the rate of p-cresol degradation in shake flasks, microcosms and field streams, Appl. Environ. Microbiol. (submitted).Google Scholar
  178. Pritchard, P. H., Connolly, J. P., Maziarz, T. M., and Bourquin, A. W., 1983b, Application of microcosm studies to verify chemical fate assessments: Comparison of the fate of methyl parathion in a sediment-water system. Water Res. (in press).Google Scholar
  179. Rubinstein, N. L, 1979, A benthic bioassay using time-lapse photography to measure the effect of toxicants on the feeding behavior of lugworms (Polychaeta: Arenicolidae), in: Marine Pollution: Functional Responses (W. B. Vernberg, A. Calabrese, F. Thurberg, and F. J. Vernberg, eds.), pp. 341–351, Academic Press, New York.Google Scholar
  180. Salt, G. W., 1979, A comment on the use of the term emergent properties, Am. Nat. 113:145–148.Google Scholar
  181. Sayler, G. S., Lund, L. C., Shiaris, M. P., Sherrill, T. W., and Perkins, R. E., 1979, Comparative effects of aroclor 1254 (polychorinated biphenyls) and phenanthrene on glucose uptake by freshwater microbial populations, Appl. Environ. Microbiol. 37:878–885.PubMedGoogle Scholar
  182. Schindler, J. E., Waide, J. B., Waldron, M. C., Hains, J. J., Schreiner, S. P., Freedman, M. L., Benz, S. L., Pattigrew, D. R., Schissel, L. A., and Clark, P. J., 1980, A microcosm approach to the study of biogeochemical systems. 1. Theoretical rationale, in: Microcosms in Ecological Research (J. P. Giesy, ed.), pp. 192–203, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.Google Scholar
  183. Seitzinger, S., Nixon, S., Pilson, M., and Burke, S., 1980, Denitrification and nitrous oxide production in near-shore marine sediments, Geochim. Cosmochim. Acta 44:1853–1860.CrossRefGoogle Scholar
  184. Sethunathan, N., Siddaramapa, R., Rajaram, K. P., Barik, S., and Wahid, P. A., 1977, Parathion: Residues in soil and water.Residue Rev. 68:91–122.PubMedGoogle Scholar
  185. Shaw, B., and Hopke, P. K., 1975, The dynamics of diaquat in a model eco-system. Environ. Lett. 8:325–335.PubMedCrossRefGoogle Scholar
  186. Sikka, H. C., and Rice, C. P., 1973, Persistence of endothall in aquatic environment as determined by gas-liquid chromatography, J. Agric. Food Chem. 21:842–846.PubMedCrossRefGoogle Scholar
  187. Simsiman, G. V., and Chesters, G., 1976, Persistence of diquat in the aquatic environment. Water Res. 10:105–112.CrossRefGoogle Scholar
  188. Smith, G. A., Nickels, J. S., Bobbie, R. J., Richards, N. L., and White, D. C., 1982, Effects of oil and gas well-drilling fluids on the biomass and community structure of microbiota that colonize sands in running seawater. Arch. Environ. Contam. Toxicol. 11:17–23.PubMedCrossRefGoogle Scholar
  189. Spain, J. C., Pritchard, P. H., and Bourquin, A. W., 1980, Effects of adaptation on biodegra-dation rates in sediment/water cores from estuarine and freshwater environments, Appl. Environ. Microbiol. 40:726–734.PubMedGoogle Scholar
  190. Stay, F. S., 1980, Review of Aquatic Microcosms Techniques Used for Hazard Assessment of Potentially Toxic Compounds. U.S. Environmental Protection Agency, Environmental Research Laboratory, Corvallis, Oregon, Publication 052, 33 pp.Google Scholar
  191. Steel, J. H., and Menzel, D. W., 1978, The application of plastic enclosures to the study of pelagic marine biota, Rapp. P.V. Reun. Cons. Int. Explor. Mer. 173:7–12.Google Scholar
  192. Stout, J. D., 1980, The role of protozoa in nutrient cycling and energy flow, in: Advances in Microbial Ecology. Vol. 4 (M. Alexander, ed.), pp. 1–50, Plenum Press, New York.Google Scholar
  193. Straskrabova, V., and Fuksa, J., 1982, Diel changes in numbers and activities of bacterioplankton in a reservoir in relation to algal production, Limnol. Oceanogr. 27:660–672.CrossRefGoogle Scholar
  194. Tempest, D. W., 1970, The place of continuous culture in microbial research.Adv. Microbiol. Physiol. 4:223–250.CrossRefGoogle Scholar
  195. Titus, J. A., Parsons, J. E., and Pfister, R. M., 1980, Translocation of mercury and microbial adaptation in a model aquatic system, Bull. Environ. Contam. Toxicol. 25:456–464.PubMedCrossRefGoogle Scholar
  196. Troussellier, M., and Legendre, P., 1981, A functional evenness index for microbial ecology, Microb. Ecol. 7:283–296.CrossRefGoogle Scholar
  197. Tsushimoto, G., Matsumura, F., and Sago, R., 1982, Fate of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in an outdoor pond and in a model aquatic ecosystem. Environ. Toxicol. Chem. 1:61–68.Google Scholar
  198. Tu, C. M., 1980, Influence of pesticides and some of the oxidized analogues on microbial populations, nitrification and respiration activities in soil. Bull Environ. Contam. Toxicol. 24:13–19.PubMedCrossRefGoogle Scholar
  199. Tu, C. M., and Miles, J. R. W., 1976, Interactions between insecticides and soil microbes, Residue Rev. 64:17–65.PubMedGoogle Scholar
  200. Twinch, A. J., and Breen, C. M., 1981, The study of phosphorus and nitrogen fluxes in enriched isolation columns, Hydrobiologia 77:49–60.CrossRefGoogle Scholar
  201. Vanderborght, J. P., and Billen, G., 1975, Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification, Limnol. Oceanogr. 20:953–961.CrossRefGoogle Scholar
  202. Van Voris, P., O’Neill, R. V., Emanuel, W. R., and Shugart, H. H., 1980, Function complexity and ecosystem stability. Ecology 61:1352–1360.CrossRefGoogle Scholar
  203. Virtanen, M. T., Kihlstrom, M., Roos, A., and Kainulainen, H., 1982, Model ecosystem for environmental transport of xenobiotics, Arch. Environ. Contam. Toxicol. 11:410–424.CrossRefGoogle Scholar
  204. Vosjan, J. H., and Olanczuk-Neyman, K. M., 1977, Vertical distribution of mineralization processes in a tidal sediment, Neth. J. Sea Res. 11:14–23.CrossRefGoogle Scholar
  205. Waide, J. B., Schindler, J. E., Waldron, M. C., Hains, J. J., Schreiner, S. P., Freedman, M. L., Benz, S. L., Pettigrew, D. R., Schissel, L. A., and Clark, J. P., 1980, A microcosm approach to the study of biogeochemical systems: Responses of aquatic laboratory microcosms to physical, chemical and biological perterbations, in: Microcosms in Ecological Research (J. B. Giesy, ed.), pp. 204–223, U.S. Department of Energy Symposium Ser. 52 (Conf-781101), NTIS, Springfield, Virginia.Google Scholar
  206. Wangersky, P. J., 1978, Production of dissolved organic matter, in: Marine Ecology. Vol. IV (O. Kinne, ed.), pp. 115–220, John Wiley, New York.Google Scholar
  207. Warren, C. E., and Davis, G. E., 1971, Laboratory stream research: Objectives, possibilities and constraints, Amu. Rev. Ecol. Syst. 2:111–144.CrossRefGoogle Scholar
  208. Webb, J. E., and Theodor, J. L., 1972, Wave induced circulation in submerged sands, J. Mar. Biol. Assoc. U.K. 52:903–914.CrossRefGoogle Scholar
  209. Weiss, P. A., 1971, The basic concept of hierarchic systems, in: Hierarchically Organized Systems in Theory and Practice (P. A. Weiss, ed.), pp. 1–43, Hafner, New York.Google Scholar
  210. White, D. C., Bobbie, R. J., King, J. D., Nickels, J. S., and Amoe, P., 1979, Lipid analysis of the sediments for microbial biomass and community structure, in: Methodology for Biomass Determinations and Microbial Activities in Sediments (C. D. Litchfield and P. L. Seyfried, eds.), pp. 87–103, American Society for Testing and Materials, Philadelphia, Pennsylvania.CrossRefGoogle Scholar
  211. Widdus, R., Trudgill, P. W., and Turnell, D. C., 1971, Effects of technical chlordane on growth and energy metabolism of Streptococcus faecalis and Mycobacterium phlei: A comparison with Bacillus subtilis, J. Gen. Microbiol. 69:21–23.Google Scholar
  212. Wiebe, W. J., and Smith, D. F., 1977, Direct measurement of dissolved organic carbon release by plankton and incorporation by microheterotrophs. Mar. Biol. 42:213–223.CrossRefGoogle Scholar
  213. Wiegert, R. G., Christian, R. R., Gallagher, J. L., Hall, J. R., Jones, R. D., and Wetzel, R. L., 1975, A preliminary ecosystem model of a coastal Georgia Spartina marsh, Estuarine Res. 1:583–601.Google Scholar
  214. Witherspoon, J. P., Bondietti, E. A., Draggon, S., Taub, F., Pearson, P., and Trabokla, J. R., 1976, State-of-the-Art and Proposed Testing for Environmental Transport of Toxic Substances, U.S. Environmental Protection Agency, EPA-500/5–76–001, 105 pp.Google Scholar
  215. Witkamp, M., 1976, Microcosm experiments on element transfer.Int. J. Environ. Stud. 10:59–63.CrossRefGoogle Scholar
  216. Witkamp, M., and Ausmus, B. S., 1975, Processes in decomposition and nutrient transfer in forest systems, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 397–416, Blackwell, Oxford, England.Google Scholar
  217. Witt, J. M., and Gillett, J. W., 1977, Terrestrial Microcosms and Environmental Chemistry, Proceedings of Symposium. Corvallis, Oregon, National Science Foundation, NSF/RA 79–0026, 147 pp.Google Scholar
  218. Wolfe, N. L., Zepp, R. G., Gordon, J. A., Baughman, G. L., and Cline, D. M., 1977, Kinetics of chronical degradation of malathion in water. Environ. Sci. Tech. 11:88–93.CrossRefGoogle Scholar
  219. Wolfe, N. L., Zepp, R. G., Schlotzhaver, P., and Sink, M., 1982, Transformation pathways of hexachlorocyclopentadiene in the aquatic environment, Chemosphere 11:91–101.CrossRefGoogle Scholar
  220. Yockim, R. S., Isensee, A. S., and Weber, E. A., 1980, Behavior of trifluralin in aquatic model ecosystems, Bull. Environ. Contam. Toxicol. 24:134–141.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • P. H. Pritchard
    • 1
  • A. W. Bourquin
    • 1
  1. 1.Environmental Research LaboratoryU.S. Environmental Protection AgencyGulf BreezeUSA

Personalised recommendations