Skip to main content
Log in

Structure, diversity, and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Variations of structure (probable taxonomic generic groups; ecological profiles), diversity (Shannon index, ¯H), and average catabolic potentialities (strain's average exoenzyme equipment, EAI; average carbonaceous compound utilization, UAI) of bacterial populations during two experimental phytoplankton blooms are described and show a certain overall unity. Oligotrophic conditions are characterized by high diversity levels (¯H from 3.60 to 4) and moderate catabolic potentialities (EAI and UAI close to 40%). During phytoplankton exponential growth phase bacteria show an EAI stability, but there is an increase of UAI with maximal values at the beginning of chlorophyll plateau (52–57%) and higher values of diversity (¯H greater than 4). Phytoplankton mortalities appear to cause an EAI increase and a decrease of both UAI and ¯H (1.50 to 2). Vibrio-like organisms seem to be closely related to this period.

In spite of these similar patterns, many differences appear between both experiments from a taxonomic point of view, the autumnal population being more diversified than the spring one.

The results obtained show the value of simultaneous analysis of these different aspects and of this ecological methodology allowing spatial or temporal comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, W., and R. Mitchell: Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull.143, 265–277 (1972)

    Google Scholar 

  2. Bensoussan, M., A. Bianchi, M. Bianchi, and M. L. Lizarraga-Partida: Potentialités cataboliques des populations bactériennes isolées des sédiments de la fosse de Cariaco, de la plaine du Demerara et du cône de l'Amazone. In: Géochimie organique des sédiments marins profonds, ORGON II, Atlantique N.E.-Brésil-Ed., pp. 13–28. C.N.R.S., Paris (1978)

    Google Scholar 

  3. Berland, B., M. Bianchi, and S. Maestrini: Etude des bactéries associées aux algues marines en culture. I. Détermination préliminaire des espèces. Mar. Biol.2, 350–355 (1969)

    Google Scholar 

  4. Berland, B. R., D. J. Bonin, J. P. Durbec, and S. Y. Maestrini: Bactéries hétérotrophes aérobies prélevées devant le delta du Rhône. I: Estimation quantitative des populations et détermination. Hydrobiologia,47, 481–497 (1975)

    Google Scholar 

  5. Berland, B. R., D. J. Bonin, J. P. Durbec, and S. Y. Maestrini: Bactéries hétérotrophes aérobies prélevées devant le delta du Rhône. III. Utilisation potentielle de différents substrats organiques comme source de carbone. Hydrobiologia50, 3–10 (1976)

    Google Scholar 

  6. Berland, B. R., D. J. Bonin, and S. Y. Maestrini: Study of bacteria associated with marine algae in culture. III. Organic substrates supporting growth. Mar. Biol.5, 68–76 (1970)

    Google Scholar 

  7. Bianchi, A., M. Bianchi, M. Bensoussan, A. Boudabous, M. L. Lizarraga-Partida, D. Marty, and S. Roussos: Etude des potentialités cataboliques des populations bactériennes isolées des sédiments et des eaux proches du fond en mer de Norvège. In: Géochimie organique des sédiments marins profonds, ORGON I, Mer de Norvège. Ed., pp. 15–31. C.N.R.S., Paris (1977)

    Google Scholar 

  8. Bianchi, M. A., and Y. P. Martin: Dynamique des populations bactériennes au cours de deux productions expérimentales de phytoplancton marin naturel. Publi. Sci. Tech. CNEXO, Actes colloq.,7 (1978)

  9. Billy, C.: Etude d'une bactérie chitinolytique anaérobieClostridium chitinophilus n. sp. Ann. Inst. Pasteur Lille1/6, 75–82 (1969)

    Google Scholar 

  10. Buchanan, R. E., and N. E. Gibbons (eds.): Bergey's Manual of Determinative Bacteriology, 8th Ed. Williams & Wilkins Co., Baltimore (1974)

    Google Scholar 

  11. Cahet, G., and Y. Martin: Production primaire et activité bactérienne en eutrophisation expérimentale (lagune du Brusc. Automne 1977). Publ. Sci. Tech. CNEXO: Actes colloq.7 (1978)

  12. Creitz, G. I., and F. A. Richards: The estimation and characterisation of plankton populations by by pigment analysis, 3. A note on the use of “millipore” membrane filters in the estimation of plankton pigments. J. Mar. Res.14, 21–216 (1955)

    Google Scholar 

  13. Darland, F.: Principal component analysis of infraspecific variation in bacteria. Appl. Microbiol.30, 282–289 (1975)

    PubMed  Google Scholar 

  14. Fogg, G. E.: The extracellular products of algae. Oceanogr. Mar. Biol. Annu. Rev.4, 195–212 (1966)

    Google Scholar 

  15. Frazier, W. C.: A method for detection of changes in gelatin due to bacteria. J. Infect. Dis.39, 302 (1926)

    Google Scholar 

  16. Gibson, D. M., S. Hendrie, N. C. Houston, and G. Hobbs: The identification of some gram negative heterotrophic aquatic bacteria, 135–159. In F. A. Skinner and J. M. Shewan (eds.): Aquatic Microbiology, Society for Applied Bacteriology, Symposium Series No. 6. Academic Press, London.

  17. Handa, N.: Carbohydrate metabolism in the marine diatomSkeletonema costatum. Mar. Biol.4, 208–214 (1969)

    Google Scholar 

  18. Hellebust, J. A.: Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr.10, 192–206 (1965)

    Google Scholar 

  19. Hood, M. A., W. S. Bishop, Jr., F. W. Bishop, S. P. Meyers, and T. Whelan: Microbial indicators of oil-rich salt marsh sediments. Appl. Microbiol.30, 982–987 (1975)

    Google Scholar 

  20. Hugh, R., and R. Leifson: The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J. Bacteriol.66, 24 (1953)

    PubMed  Google Scholar 

  21. Jannasch, H. W., and G. E. Jones: Bacterial population in sea water as determined by different methods of enumeration. Limnol. Oceanogr.4, 128–139 (1959)

    Google Scholar 

  22. Kaneko, T., R. M. Atlas, and M. Krichevsky: Diversity of bacterial populations in the Beaufort sea. Nature270, 596–599 (1977)

    Google Scholar 

  23. Kovacs, N.: Identification ofPseudomonas pyocyanea by oxidase reaction. Nature178, 703 (1956)

    PubMed  Google Scholar 

  24. Laycock, R. A.: The detrital food chain based on seaweeds. I. Bacteria associated with the surface ofLaminaria fronds. Mar. Biol.25, 223–231 (1974)

    Google Scholar 

  25. Lighthart, B.: A cluster analysis of some bacteria in the water column of Green Lake, Washington, Can. J. Microbiol.21, 392–394 (1975)

    PubMed  Google Scholar 

  26. Litchfield, C. D., R. R. Colwell, and J. M. Prescott: Numerical taxonomy of heterotrophic bacteria growing in association with continuous culture ofChlorella soroliniana. Appl. Microbiol.18, 1044–1049 (1969)

    Google Scholar 

  27. Lyman, J., and R. H. Fleming: Composition of sea water. J. Mar. Res.3, 134–146 (1940)

    Google Scholar 

  28. Margalef, R.: La teoria de la informacion en ecologia. Mem. Real. Acad. Cien. Artes32, 373–449 (1957)

    Google Scholar 

  29. Margalef, R.: Valeur indicatrice de la composition des pigments du phytoplancton sur la productivité, composition taxonomique et propriétés dynamiques des populations. Rapp. Comm. Int. Medit.15, 277–281 (1960)

    Google Scholar 

  30. Margalef, R.: Communication of structure in planktonic populations. Limnol. Oceanogr.6, 124–128 (1961)

    Google Scholar 

  31. Murchelano, R. A., and C. Brown: Bacterial flora of some algal foods used for rearing bivalve larvae. J. Fish. Res. Board Can.26, 1760–1764 (1969)

    Google Scholar 

  32. Nalewajko, C., and D. W. Schindler: Primary production, extracellular release and heterotrophy in two lakes in the ELA, North western Ontario. J. Fish. Res. Board Can.33, 219–226 (1976)

    Google Scholar 

  33. Niewolak, S.: The influence of living and dead cells ofChlorella vulgaris andScenedesmus obliques on aquatic microorganisms. Pol. Arch. Hydrobiol.18, 43–54 (1971)

    Google Scholar 

  34. Okaichi, T.: Significance of amino-acid composition of phytoplankton and suspensoïd in marine biological production. Bull. Jpn. Soc. Sci. Fish.40, 471–478 (1974)

    Google Scholar 

  35. Oliver, J. D., and R. R. Colwell: Computer program designed to follow fluctuations in microbial populations and its application in a study of Cheasapeake Bay microflora. Appl. Microbiol.28, 185–192 (1974)

    PubMed  Google Scholar 

  36. Oppenheimer, C. H., and C. E. Zobell: The growth and viability of sixty three species of marine bacteria as influenced by hydrostatic pressure. J. Mar. Res.11, 10–18 (1952)

    Google Scholar 

  37. Parsons, T. R., K. Stephens, and J. D. H. Strickland: On the chemical composition of eleven species of marine phytoplankters. J. Fish. Res. Board Can.18, 1001–1015 (1961)

    Google Scholar 

  38. Prieur, D.: Etude de bactéries associées aux élevages de larves de bivalves marins. Aquaculture8, 225–240 (1976)

    Google Scholar 

  39. Richards, F. A., and T. G. Thompson: The estimation and characterisation of plankton population by pigment analysis. 2. A spectrophotometric method for the estimation of plankton pigment. J. Mar. Res.11, 156–172 (1952)

    Google Scholar 

  40. Riva, A., N. Vicente: ECOTRON-EMBIEZ. Situation et aménagement du site. Publ. Sci. Techn. CNEXO: Actes colloq.7 (1978)

  41. Roland, F., D. Bourbon, and S. Sztrum: Différenciation rapide des Entérobactériacées sans action sur le lactose. Ann. Inst. Pasteur Lille73, 914–916 (1947)

    Google Scholar 

  42. Shannon, C. E.: A mathematical theory of communication. Bell. Syst. Technol. J.27, 379–423 (1948)

    Google Scholar 

  43. Shewan, J. M., G. Hobbs, and W. Hodgkiss: A determinative scheme for the identification of certain genera of Gram-negative bacteria, with special reference to the pseudomonadaceae. J. Appl. Bacteriol.23, 379–390 (1960)

    Google Scholar 

  44. Sieburth, J. McN.: Observation on bacteria planktonic in Narragansett Bay, Rhode Island; a Résumé. Bull. Misaki Mar. Biol. Inst. Kyoto Univ.12, 49–64 (1968)

    Google Scholar 

  45. Sierra, G.: A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek23, 15 (1957)

    PubMed  Google Scholar 

  46. Simidu, U., K. Ashino, and E. Kaneko: Bacterial flora of phyto and Zooplankton in the inshore water of Japan. Can. J. Microbiol.17, 1157–1160 (1971)

    PubMed  Google Scholar 

  47. Simidu, U., E. Kaneko, and N. Taga: Microbiological studies of Tokyo Bay. Microbial Ecol.3, 173–191 (1977)

    Google Scholar 

  48. Sneath, P. H. A.: The application of computers to taxonomy. J. Gen. Microbiol.17, 201–226 (1957)

    PubMed  Google Scholar 

  49. Sokal, R. R., and D. Michener: A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull.38, 1409–1438 (1958)

    Google Scholar 

  50. Stevenson, L. H., C. E. Millwood, and B. M. Hebeler: Aerobic heterotrophic bacterial populations in estuarine water. In R. R. Colwell and R. Y. Monta (eds.): The Effect of the Ocean Environment on Microbial Activities, pp. 268–285. University Park Press, Baltimore.

  51. Travers, M.: Diversité du microplancton du Golfe de Marseille en 1964. Mar. Biol.8, 308–343 (1971)

    Google Scholar 

  52. Utermöhl, H.: Uberdas umgekehrte Mikroskop. Arch. Hydrobiol.22, 643–665 (1931)

    Google Scholar 

  53. Utermöhl, H.: Zur Vervollkommung der quantitativen Phytoplankton-methodik. Comm. Assoc. In. Limnol. Theor: appl.9, 38 pp. (1958)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, Y.P., Bianchi, M.A. Structure, diversity, and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton. Microb Ecol 5, 265–279 (1980). https://doi.org/10.1007/BF02020334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02020334

Keywords

Navigation