Skip to main content

Protection of Superalloys for Turbine Application

  • Chapter
Advances in Corrosion Science and Technology

Abstract

Superalloys are so named because they retain useful strength to temperatures approaching 2000°F (1093°C). Unfortunately, the alloying elements responsible for imparting high-temperature strength are often responsible for lowering the alloy’s resistance to aggressive environments. Since superalloys are used extensively in aircraft, marine, industrial, and vehicular gas turbines, where some of the most severe environments are encountered, this lack of environmental resistance proves to be a serious problem. Attention has therefore been focused in recent years on developing suitable coatings and claddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Grisaffe, Coatings and Protection, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).

    Google Scholar 

  2. N. R. Linblad, A Review of the Behavior of Aluminide-Coated Superalloys, Oxid. Met. 1(1), 143–170 (1969).

    Article  Google Scholar 

  3. G. W. Goward, Current Research on the Surface Protection of Superalloys for Gas Turbine Engines, J. Met. 22 (10), 31–39 (1970).

    Google Scholar 

  4. W. Fawley, Superalloy Progress, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).

    Google Scholar 

  5. R. F. Decker and C. T. Sims, The Metallurgy of Nickel-Base Alloys, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).

    Google Scholar 

  6. C. T. Sims, Cobalt-Base Alloys, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).

    Google Scholar 

  7. G. E. Wasielewski and R. A. Rapp, High Temperature Oxidation, in The Super alloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).

    Google Scholar 

  8. A. M. Beltran and D. A. Shores, Hot Corrosion, in The Super alloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).

    Google Scholar 

  9. J. Stringer, Hot Corrosion in Gas Turbines, Metals and Ceramics Information Center Report 72–08, Battelle-Columbus, Ohio (1972).

    Google Scholar 

  10. J. R. Myers and N. M. Geyer, Coatings for Superalloys in Gas-Turbine Engines, SAMPE Quart. 1, 18–28 (1970).

    Google Scholar 

  11. S. Priceman and L. Sama, Reliable, Practical, Protective Coatings for Refractory Metals Formed by the Fusion of Silicon Alloy Slurries, Electrochem. Tech. 6(9–10), 315–326 (1968).

    Google Scholar 

  12. W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Ap Mech. 18(3), 293–297 (1951).

    Google Scholar 

  13. G. Lehnert and H. Meinhardt, Present State and Trend of Development of Surface Coating Methods Against Oxidation and Corrosion at High Temperatures, Electrodep. Surf. Treat. 1, 71–76 (1972–73).

    Google Scholar 

  14. C. A. Krier and J. M. Gunderson, Oxidation Resistant Coatings, Their Application and Capabilities, Met. Engr. Quart. 5(May) 1–15 (1965).

    Google Scholar 

  15. High Temperature Oxidation Resistant Coatings, National Academy of Sciences, Washington, D.C. (1970).

    Google Scholar 

  16. V. I. Malkin and V. V. Pokidyshev, The Influence of a Third Component Added to Nickel-Aluminum Alloys on the Thermodynamic Properties of the y and y’-Phases, Dokl. Akad. Nauk. SSSR 166(6), 1390–1392 (1966).

    Google Scholar 

  17. J. V. Long, Refractory Coatings for High-Temperature Protection, Met. Prog. 79(3), 114–120(1961).

    Google Scholar 

  18. R. C. Elam, John A. Petrusha, and Frank P. Talboom, Method for Coating the Super- alloys, U.S. Patent 3, 528, 861 (Sept. 15, 1970).

    Google Scholar 

  19. F. P. Talboom and Johannes Graflf-Wallner, Nickel or Cobalt Base with a Coating Containing Iron, Chromium, and Aluminium, U.S. Patent 3,542,530 (Nov. 24, 1970).

    Google Scholar 

  20. M. A. Gedwill and S. J. Grisaffe, Evaluation of Nl and F Claddings on TD-Nr: Mach 1 Burner Rig Tests at 2100°F (1149°C), NASA Tech. Memo. X-52916 (Nov. 1970).

    Google Scholar 

  21. M. A. Gedwill, An Evaluation of Three Oxidation-Resistant Claddings for IN-100 and WI-52 Superalloys, NASA Tech. Note D-4383 (1969).

    Google Scholar 

  22. R. B. Puyear, High Temperature Metallic Coatings, Mach. Design 176–184 (July 19, 1962).

    Google Scholar 

  23. J. A. Petrusha and F. P. Talboom, Superalloy Coatings for Gas Turbine Engine Applications, in 1966 National Metal Congress (Oct. 31-Nov. 3, 1966) [quoted by Lindblad, Ref 2)].

    Google Scholar 

  24. J. Smialek, Exploratory Study of Oxidation-Resistant Aluminized Slurry Coatings for IN-100 and WI-52 Superalloys, NASA Tech. Note D-6329 (May 1971).

    Google Scholar 

  25. J. D. Gadd, J. F. Nejedlik, and L. D. Graham, Vacuum Pack and Slurry Coating Processes for Coating Superalloys, Electrochem. Tech. 6(9–10), 307–315 (1968).

    Google Scholar 

  26. T. V. Levchenko, V. I. Moroz, and L. P. Buyanova, A High-Productivity Method for Aluminizing Nickel Alloys, in Protective Coatings on Metals (G. V. Samsonov, ed.). Vol. 4, pp. 114–117, Consultants Bureau, New York (1972).

    Google Scholar 

  27. A. D. Joseph and F. P. Talboom, Coatings for High Temperature Alloys, U.S. Patent 3,330,633 (July 11, 1967).

    Google Scholar 

  28. C. M. Jackson and A. M. Hall, Surface Treatments of Nickel and Nickel-Base Alloys, NASA Tech. Memo. X-53448 (April, 1966).

    Google Scholar 

  29. N. C. Cook, Metalliding, Sci. Am. 221(8), 38–46 (1969).

    Article  Google Scholar 

  30. S. Ueda and S. Mitsuta, A Study of Aluminum Diffusion Coating Phenomenon, Report of Castings Research Lab., Waseda Univ., Japan, No. 23, 9–16 (1972).

    Google Scholar 

  31. F. P. Talboom, R. C. Elam, and L. W. Wilson, Evaluation of Advanced Superalloy Protection Systems, NASA Contract Rep. 72813 (Dec. 1970).

    Google Scholar 

  32. A. E. Simmons, Jr., Composite Coating for the Superalloys, U.S. Patent 3,649,225 (March 14, 1972).

    Google Scholar 

  33. D. J. Evans and R. E. Elam, Cobalt-Base Coating for the Superalloys, U.S. Patent 3,676,085 (July 11, 1972).

    Google Scholar 

  34. W. N. Greaves, Vapor Deposition of Alloys, U.S. Patent 3,655,430 (April 11, 1972)

    Google Scholar 

  35. D. A. Prokoshkin, B. N. Arzamosov, E. V. Ryabchenko, and I. A. Mikhailov, Production of Coatings in a Glow Discharge, in Protective Coatings on Metals (G. V. Samsonov, ed.). Vol. 3, pp. 1–6, Consultants Bureau, New York (1971).

    Google Scholar 

  36. R. L. Samuel and N. A. Lockington, Protection of Nickel-Base Alloys Against Thermal Corrosion, Chem. Proc. Engr. 45(5), 249–252 (1964); The Diffusion of Chromium and Other Elements Into Nonferrous Metals, Trans. Inst. Met. Finishing 31, 153–166 (1954).

    Google Scholar 

  37. G. Llewelyn, Protection of Nickel-Base Alloys Against Sulfur Corrosion by Pack Aluminizing, in Hot Corrosion Problems Associated With Gas Turbines, ASTM-STP-421 (Sept. 1967).

    Google Scholar 

  38. P. N. Walsh, Chemical Aspects of Pack Cementation, in Chemical Vapor Deposition, pp. 147–168, The Electrochemical Society, Princeton, N.J. (1973).

    Google Scholar 

  39. L. W. Derry and R. L. Samuel, Protection Against Thermal Corrosion, Chem. Proc. Engr. 578–582 (Nov. 1962).

    Google Scholar 

  40. M. Hansen, Constitution of Binary Alloys (2nd ed.), McGraw-Hill, New York (1958).

    Google Scholar 

  41. R. P. Elliot, Constitution of Binary Alloys, First Sup, McGraw-Hill, New York (1965).

    Google Scholar 

  42. F. A. Shunk, Constitution of Binary Alloys, Second Suppl., McGraw-Hill, New York (1969).

    Google Scholar 

  43. A. U. Seybolt, Investigation of the Basic Parameters Affecting the Properties of Inter- metallic Compounds, WADC-TD-184, Part VI (June 1965).

    Google Scholar 

  44. R. L. Wachtell, An Investigation of Various Properties of Nl, WADC Tech. Report 52–291 (Sept. 1952).

    Google Scholar 

  45. G. Romeo and D. W. Mee, The Na2S04-Induced Corrosion Properties of Ni-Base Superalloy Phases, J. Electrochem. Soc. 122(2), 188–199 (1975).

    Article  Google Scholar 

  46. V. S. Moore, W. D. Brenthall, and A. R. Stetson, Evaluation of Coatings for Cobalt- and Nickel-Base Superalloys, NASA Contract. Rep. 72714 (July 1970).

    Google Scholar 

  47. P. M. Robinson and M. B. Bever, Intermetallic Compounds, p. 42, John Wiley, New York (1967).

    Google Scholar 

  48. T. K. Redden, Nl Coating-Base Metal Interactions in Several Nickel-Base Alloys, Trans. TMS-AI ME 242(8), 1695–1702 (1968).

    Google Scholar 

  49. M. A. Levinstein and J. R. Stanley, Improved Aluminide Coatings for Nickel-Base Alloys, NASA Contract. Rep. 72863 (March 1971).

    Google Scholar 

  50. E. M. Grala, Investigations of Nl and Nil, in Mechanical Properties of Intermetallic Compounds (J. H. Westbrook, ed.), John Wiley, New York (1960).

    Google Scholar 

  51. S. Rideout, W. D. Manly, E. L. Kamen, B. S. Lement, and P. A, Beck, Intermediate Phases in Ternary Alloy Systems of Transition Elements, Trans. TMS-AI ME 191(10), 872–876 (1951).

    Google Scholar 

  52. G. W. Goward, D. H. Boone, and C. S. Giggins, Formation and Degradation Mechanisms of Aluminide Coatings on Nickel-Base Superalloys, Trans ASM Quart. 60–61, 228–241 (1967–68).

    Google Scholar 

  53. G. W. Goward and D. H. Boone, Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-Base Superalloys, Oxid. Met. 3(5), 475–495 (1971).

    Article  Google Scholar 

  54. M. M. P. Janssen and G. D. Rieck, Reaction Diffusion and Kirkendall-Effect in the Nickel-Aluminium System, Trans. Met. Soc. 239(9), 1372–1385 (1967).

    Google Scholar 

  55. L. S. Castleman and L. L. Seigle, Formation of Intermetallic Layers in Diffusion Couples, Trans. Met. Soc. AIME 209(10), 1173–1174 (1957).

    Google Scholar 

  56. L. S. Castleman and L. L. Seigle, Layer Growth During Interdiffusion in the Aluminum-Nickel System, Trans. Met. Soc. AIME 212(10), 589–596 (1958).

    Google Scholar 

  57. C. L. Angerman, Metallographic Studies of Al-Ni-U Bonds in Nuclear Fuel Elements, Trans. ASM Quart. 54, 260–275 (1961).

    Google Scholar 

  58. L. S. Castleman and H. A. Froot, Nucleation of Intermetallic Phases in Aluminum-Nickel Diffusion Couples, Trans. ASM Quart. 56, 205–208 (1963).

    Google Scholar 

  59. M. M. P. Janssen, Diffusion in the Nickel-Rich Part of the Ni-Al System at 1000 to 1300°C; Nl Layer Growth, Diffusion Coefficients, and Interface Concentrations, Met. Trans. 4(6), 1623–1633 (1973).

    Google Scholar 

  60. R. Sivakumar, N. B. Menon, and L. L. Seigle, Boundary Conditions for Diffusion in the Pack-Aluminizing of Nickel, Met. Trans. 4(6), 396–398 (1973).

    Article  Google Scholar 

  61. V. T. Borisov, V. M. Goltkov, and G. N. Dubinin, Diffusion Cladding of Metals (G. V. Samsonov, ed.), pp. 17–23, English Transl., Consultants Bureau, New York (1967).

    Chapter  Google Scholar 

  62. C. Wagner, The Evaluation of Data Obtained with Different Couples of Binary Single Phase and Muhiphase Systems, Acta Met. 17(2), 99–107 (1969).

    Article  Google Scholar 

  63. R. Sivakumar, Ph.D. Thesis, State Univ. of New York at Stony Brook (1975).

    Google Scholar 

  64. S. R. Levine and R. M. Caves, Thermodynamics and Kinetics of Pack Aluminide Coating Formation on IN-100, J. Electrochem. Soc. 121(8), 1051–1064(1974).

    Article  Google Scholar 

  65. H. Brill-Edwards and M. Epner, Effect of Material Transfer Mechanisms on the Formation of Discontinuities in Pack Cementation Coatings on Superalloys, Electrochem. Tech. 6(9–10), 229–307 (1968).

    Google Scholar 

  66. H. N. Browne, M. M. Williams, and D. R. Cruise, NOTS-TP-2434, NAVWEPS Report 7043 (AD-246–591), U.S. Naval Ordnance Test Station, China Lake, Calif. (1960).

    Google Scholar 

  67. S. Gordon and B. J. Mride, NASA SP-273 (1971).

    Google Scholar 

  68. P. T. Kolomytsev, P. P. Lebedev, and L. A. Kostina, Effectiveness of Diffusion Metallizing as a Means of Increasing the Life of Gas Turbine Blades, in Protective Coatings on Metals, Vol. 4, pp. 193–197 (G. V. Samsonov, ed.), Consuhants Bureau, New York (1972).

    Google Scholar 

  69. P. Galmiche, in AGARD Conf. Proc. No. 73 on High Temperature Materials, NASA, Langley Field, Va., Paper 20; Met. Mater. 2(4), 241 (1968).

    Google Scholar 

  70. David J. Levine and Moses A. Levinstein, Metallic Surface Treatment Material, U.S. Patent 3,540,878 (Nov. 17, 1970).

    Google Scholar 

  71. J. F. Nejedlik, Development of Improved Coatings for Nickel- and Cobalt-Base Alloys, AFML-TR-70–208 (December 1970).

    Google Scholar 

  72. A. J. Bradley and A. Taylor, An X-Ray Analysis of the Nickel-Aluminum System, Proc. R. Soc. (Lond.) A159, 56–72 (1937).

    Article  Google Scholar 

  73. M. J. Fleetwood, Influence of Nickel-Base Alloy Composition on the Behavior of Pro tective Aluminide Coatings, J. Inst. Met. 98, 1–7 (1970).

    Google Scholar 

  74. A. Davin and D. Coutsouradis, Hot Corrosion of Experimental Aluminum-Coated Cobalt-Base Alloys, Cobalt 55(6), 99–101 (1972).

    Google Scholar 

  75. S. Rosen and J. A. Goebel, The Crystal Structure of Ni-rich Nl and Martensitic Nl, Trans. Met. Soc. AIME 242(4) 722–724 (1968).

    Google Scholar 

  76. J. L. Smialik, Martensite in Nl Oxidation Resistant Coatings, Met. Trans. 2(3), 913–915 (1971).

    Article  Google Scholar 

  77. J. L. Smialek and R. F. Hehemann, Transformation Temperature of Martensite in i5-Phase Nickel Aluminide, Met. Trans. 4(6), 1571–1575 (1973).

    Google Scholar 

  78. A. Ball, Observation of a Martensitic Transformation in the Compound Nl, Met. Sci. J. 1, 47–48 (March 1967).

    Google Scholar 

  79. D. B. Masson, Composition-Temperature Behavior of the Martensitic Transformation in Beta Ad, Trans. Met. Soc. AI ME 218(2), 94–97 (1960).

    Google Scholar 

  80. N. Ridley and H. Pops, Martensitic Transformation in Binary and Ternary Alloys Based on the An Beta Prime Phase, Met. Trans. 1(10), 2867–2873 (1970).

    Google Scholar 

  81. D. Chatterji, D. W. Mee, and A. Ritzer, Effects of Alloying Elements on the Martensitic Transformation of Nl, to be pushed.

    Google Scholar 

  82. Per Kofstad, High Temperature Oxidation of Metals, John Wiley, New York (1966).

    Google Scholar 

  83. B. E. Deal and A. S. Grove, General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys. 36(12), 3770–3778 (1965).

    Article  Google Scholar 

  84. R. A. Perkins and C. M. Parker, Coatings for Refractory Metals in Aerospace Environment, AFML-TR-65–351 (Sept. 1965).

    Google Scholar 

  85. S. J. Grisaffe, D. L. Deadmore, and W. J. Sanders, Furnace and High Velocity Oxidation of Aluminide Coated Cobalt Superalloy WI-52, NASA Tech. Note D-5834 (May 1970).

    Google Scholar 

  86. A. U. Seybolt, quoted by Levinstein and Stanley, Ref. 46.

    Google Scholar 

  87. I. G. Wright, Oxidation of Iron-, Nickel-, and Cobalt-Base Alloys, Metals and Ceramics Information Center Report MCIC-72–07, Battelle-Columbus, Ohio (1972).

    Google Scholar 

  88. D. Chatterji, A. Hampton, H. C. Graham, and H. H. Davis, A Comparative Study of the Oxidation Behaviors of Ni-18Cr and Ni-18Cr-f, in Int. Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Princeton, N.J. (May 1975).

    Google Scholar 

  89. D. W. Mee, D. Chatterji, G. Romeo, and H. S. Spacil, Hot Corrosion of High Temperature Alloys in Lead-Contaminated Sodium Sulphate, in Ref. 85.

    Google Scholar 

  90. D. Chatterji, D. W. Mee, G. Romeo, and H. S. Spacil, The Effects of Lead on the Hot Corrosion of Nickel-Base Alloys, J. Electrochem. Soc. 122(7), 941–952 (1975).

    Article  Google Scholar 

  91. J. A. Goebel, F. S. Pettit, and G. W. Goward, Mechanisms for the Hot Corrosion of Nickel-Base Alloys, Met Trans. 4(1), 261–278 (1973).

    Article  Google Scholar 

  92. P. J. Anderson, D. H. Boone, and G. F. Paskiet, A Comparison of the Effect of Inward and Outward Diffusion Aluminide Coatings on the Fatigue Behavior of Nickel-Base Superalloys, Oxid. Met. 4(2), 113–119 (1972).

    Article  Google Scholar 

  93. R. S. Bartocci, Behavior of High Temperature Coatings for Gas Turbine Engines in Hot Corrosion Problems Associated with Gas Turbines, ASTM-STP-421 (Sept. 1967).

    Google Scholar 

  94. R. L. Marron, N. R. Lindblad, and D. Chatterji, “Environmental Resistance of Pure and Doped y’-Nil and j-Nl”, in the Annual Meeting of the National Association of Corrosion Engineers, Toronto, Canada (May 1975), General Electric Report 75CRD.

    Google Scholar 

  95. A. Taylor and R. W. Floyd, The Constitution of Nickel-Rich Alloys of Nickel-Chromium-Aluminum System, J. Inst. Met. 81, 451–464 (1952–53).

    Google Scholar 

  96. G. Lehnert and H. W. Meinhardt, A New Protective Coating for Nickel Alloys, Electrodep. Surf. Treat. 1, 189–197 (1972–73).

    Article  Google Scholar 

  97. Production of Protective Layers on Cob-Based Alloys, U.K. Patent 1,282,530 (1970).

    Google Scholar 

  98. G. Lehnert and H. W. Meinhardt, LDC-2, eine neue Schutzchicht für Nickellegierungen, DEW-Techniche Berichte 11(4), 236–240 (1971).

    Google Scholar 

  99. J. L. Smialek, Fused Silicon-Rich Coatings for Superalloys, NASA Tech. Memo. X-3001 (March 1974).

    Google Scholar 

  100. D. W. Mee and G. Romeo, Effects of Transient Carbon Deposition on the Sodium Sulphate-Induced Hot Corrosion of Nickel-Base Alloys, Met. Trans. 6A(1), 101–109 (1975).

    Google Scholar 

  101. M. E. El-Dahshan, J. Stringer, and D. P. Whittle, The Effect of Carbon on the Hot Corrosion of Cobalt-base Alloys, Cobalt 57, 182–201 (Dec. 1972).

    Google Scholar 

  102. A. U. Seybolt and Eric Lifshin, A Study of Pack Process Aluminide Coatings on Nickel-Base Alloys, General Electric Report. 70-C-229 (July 1970).

    Google Scholar 

  103. P. C. Felix and H. Beutler, CVD-Silicon Coatings for the Corrosion Protection of Turbine Blades in Proc. Third International Conference on Chem. Vapor Deposition, The Electrochem. Soc., Princeton, N.J. (1972).

    Google Scholar 

  104. P. Felix and E. Erdos, CVD-Silicon Coatings for Protection of Stationary Gas Turbines, Werk. Korrosion 8, 627–636 (1972).

    Article  Google Scholar 

  105. C. S. Giggins and F. S. Pettit, Oxidation of Ni-Cr Alloys Between 800° and 1200°C, Trans. Met. Soc.-AIME 245(12) 2495–2507 (1969).

    Google Scholar 

  106. H. C. Graham and H. H. Davis, Vaporization of Chromium Oxide, J. Am. Ceram. Soc. 54(2), 89–93 (1971).

    Article  Google Scholar 

  107. J. Stringer, B. A. Wilcox, and R. I. Jaffee, The High-Temperature Oxidation of Nickel-20 wt% Chromium Alloys Containing Dispersed Oxide Phases, Oxid. Met 5(1), 11–47 (1972).

    Article  Google Scholar 

  108. D. A. Shores, Electrochemical Aspects of Hot Corrosion Reactions on Coating/Substrate Systems, Abstract No. 89, Fall Meeting of the Electrochem. Soc., Boston (1973).

    Google Scholar 

  109. J. W. Omer, Nondestructive Testing of Protective Coating Systems, AFML-TR-70–226 (Dec. 1970).

    Google Scholar 

  110. P. E. Hamilton, K. H. Ryan, and E. S. Nichols, Nickel-Base Alloys and Their Relationship to Hot Corrosion Environments, in Hot Corrosion Problems Associated With Gas Turbines, ASTM-STP-421 (Sept. 1967).

    Google Scholar 

  111. L. D. Graham, J. D. Gadd, and R. J. Quigg, Hot Corrosion Behavior of Coated and Uncoated Superalloys, in Ref. 110.

    Google Scholar 

  112. W. L. Wheatfall, H. Doering, and G. J. Danek, Jr., Behavior of Superalloy Oxide Films in Mohen Salts, in Ref. 110.

    Google Scholar 

  113. A. Davin, D. Coutsouradis, and L. Habraken, Development and Properties of Cobalt-Base Alloys with Improved Hot Corrosion Resistance, Cobalt 57(12), 175–181 (1972).

    Google Scholar 

  114. J. Huminik, High Temperature Inorganic Coatings, Reinhold Publishing, New York (1963).

    Google Scholar 

  115. P. Lane, Jr., and N. M. Geyer, A Critical Look at Superalloy Coatings for Gas Turbine Components, J. Met. 18(2), 186–191 (1966).

    Google Scholar 

  116. F. P. Talboom and J. A. Petrusha, Superalloy Coatings for Components for Gas Turbine Engine Applications, AFML-TR-66–15 (February 1966).

    Google Scholar 

  117. P. J. Piearcey, Heat Treatment of Nickel-Base Alloys, U.S. Patent. 3,310,440 (March 21, 1967).

    Google Scholar 

  118. C. H. Wells and C. P. Sullivan, Low Cycle Fatique of Udimet 700 at 1700°F, Trans. ASM Quart. 60, 149–155 (March 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Chatterji, D., DeVries, R.C., Romeo, G. (1976). Protection of Superalloys for Turbine Application. In: Fontana, M.G., Staehle, R.W. (eds) Advances in Corrosion Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8986-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8986-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8988-0

  • Online ISBN: 978-1-4684-8986-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics