Advertisement

Protection of Superalloys for Turbine Application

  • D. Chatterji
  • R. C. DeVries
  • G. Romeo

Abstract

Superalloys are so named because they retain useful strength to temperatures approaching 2000°F (1093°C). Unfortunately, the alloying elements responsible for imparting high-temperature strength are often responsible for lowering the alloy’s resistance to aggressive environments. Since superalloys are used extensively in aircraft, marine, industrial, and vehicular gas turbines, where some of the most severe environments are encountered, this lack of environmental resistance proves to be a serious problem. Attention has therefore been focused in recent years on developing suitable coatings and claddings.

Keywords

Aluminide Coating Coating Element Pack Cementation Turbine Application Silicide Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Grisaffe, Coatings and Protection, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).Google Scholar
  2. 2.
    N. R. Linblad, A Review of the Behavior of Aluminide-Coated Superalloys, Oxid. Met. 1(1), 143–170 (1969).CrossRefGoogle Scholar
  3. 3.
    G. W. Goward, Current Research on the Surface Protection of Superalloys for Gas Turbine Engines, J. Met. 22 (10), 31–39 (1970).Google Scholar
  4. 4.
    W. Fawley, Superalloy Progress, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).Google Scholar
  5. 5.
    R. F. Decker and C. T. Sims, The Metallurgy of Nickel-Base Alloys, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).Google Scholar
  6. 6.
    C. T. Sims, Cobalt-Base Alloys, in The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).Google Scholar
  7. 7.
    G. E. Wasielewski and R. A. Rapp, High Temperature Oxidation, in The Super alloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).Google Scholar
  8. 8.
    A. M. Beltran and D. A. Shores, Hot Corrosion, in The Super alloys (C. T. Sims and W. C. Hagel, eds.), John Wiley, New York (1972).Google Scholar
  9. 9.
    J. Stringer, Hot Corrosion in Gas Turbines, Metals and Ceramics Information Center Report 72–08, Battelle-Columbus, Ohio (1972).Google Scholar
  10. 10.
    J. R. Myers and N. M. Geyer, Coatings for Superalloys in Gas-Turbine Engines, SAMPE Quart. 1, 18–28 (1970).Google Scholar
  11. 11.
    S. Priceman and L. Sama, Reliable, Practical, Protective Coatings for Refractory Metals Formed by the Fusion of Silicon Alloy Slurries, Electrochem. Tech. 6(9–10), 315–326 (1968).Google Scholar
  12. 12.
    W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Ap Mech. 18(3), 293–297 (1951).Google Scholar
  13. 13.
    G. Lehnert and H. Meinhardt, Present State and Trend of Development of Surface Coating Methods Against Oxidation and Corrosion at High Temperatures, Electrodep. Surf. Treat. 1, 71–76 (1972–73).Google Scholar
  14. 14.
    C. A. Krier and J. M. Gunderson, Oxidation Resistant Coatings, Their Application and Capabilities, Met. Engr. Quart. 5(May) 1–15 (1965).Google Scholar
  15. 15.
    High Temperature Oxidation Resistant Coatings, National Academy of Sciences, Washington, D.C. (1970).Google Scholar
  16. 16.
    V. I. Malkin and V. V. Pokidyshev, The Influence of a Third Component Added to Nickel-Aluminum Alloys on the Thermodynamic Properties of the y and y’-Phases, Dokl. Akad. Nauk. SSSR 166(6), 1390–1392 (1966).Google Scholar
  17. 17.
    J. V. Long, Refractory Coatings for High-Temperature Protection, Met. Prog. 79(3), 114–120(1961).Google Scholar
  18. 18.
    R. C. Elam, John A. Petrusha, and Frank P. Talboom, Method for Coating the Super- alloys, U.S. Patent 3, 528, 861 (Sept. 15, 1970).Google Scholar
  19. 19.
    F. P. Talboom and Johannes Graflf-Wallner, Nickel or Cobalt Base with a Coating Containing Iron, Chromium, and Aluminium, U.S. Patent 3,542,530 (Nov. 24, 1970).Google Scholar
  20. 20.
    M. A. Gedwill and S. J. Grisaffe, Evaluation of Nl and F Claddings on TD-Nr: Mach 1 Burner Rig Tests at 2100°F (1149°C), NASA Tech. Memo. X-52916 (Nov. 1970).Google Scholar
  21. 21.
    M. A. Gedwill, An Evaluation of Three Oxidation-Resistant Claddings for IN-100 and WI-52 Superalloys, NASA Tech. Note D-4383 (1969).Google Scholar
  22. 22.
    R. B. Puyear, High Temperature Metallic Coatings, Mach. Design 176–184 (July 19, 1962).Google Scholar
  23. 23.
    J. A. Petrusha and F. P. Talboom, Superalloy Coatings for Gas Turbine Engine Applications, in 1966 National Metal Congress (Oct. 31-Nov. 3, 1966) [quoted by Lindblad, Ref 2)].Google Scholar
  24. 24.
    J. Smialek, Exploratory Study of Oxidation-Resistant Aluminized Slurry Coatings for IN-100 and WI-52 Superalloys, NASA Tech. Note D-6329 (May 1971).Google Scholar
  25. 25.
    J. D. Gadd, J. F. Nejedlik, and L. D. Graham, Vacuum Pack and Slurry Coating Processes for Coating Superalloys, Electrochem. Tech. 6(9–10), 307–315 (1968).Google Scholar
  26. 26.
    T. V. Levchenko, V. I. Moroz, and L. P. Buyanova, A High-Productivity Method for Aluminizing Nickel Alloys, in Protective Coatings on Metals (G. V. Samsonov, ed.). Vol. 4, pp. 114–117, Consultants Bureau, New York (1972).Google Scholar
  27. 27.
    A. D. Joseph and F. P. Talboom, Coatings for High Temperature Alloys, U.S. Patent 3,330,633 (July 11, 1967).Google Scholar
  28. 28.
    C. M. Jackson and A. M. Hall, Surface Treatments of Nickel and Nickel-Base Alloys, NASA Tech. Memo. X-53448 (April, 1966).Google Scholar
  29. 29.
    N. C. Cook, Metalliding, Sci. Am. 221(8), 38–46 (1969).CrossRefGoogle Scholar
  30. 30.
    S. Ueda and S. Mitsuta, A Study of Aluminum Diffusion Coating Phenomenon, Report of Castings Research Lab., Waseda Univ., Japan, No. 23, 9–16 (1972).Google Scholar
  31. 31.
    F. P. Talboom, R. C. Elam, and L. W. Wilson, Evaluation of Advanced Superalloy Protection Systems, NASA Contract Rep. 72813 (Dec. 1970).Google Scholar
  32. 32.
    A. E. Simmons, Jr., Composite Coating for the Superalloys, U.S. Patent 3,649,225 (March 14, 1972).Google Scholar
  33. 33.
    D. J. Evans and R. E. Elam, Cobalt-Base Coating for the Superalloys, U.S. Patent 3,676,085 (July 11, 1972).Google Scholar
  34. 34.
    W. N. Greaves, Vapor Deposition of Alloys, U.S. Patent 3,655,430 (April 11, 1972)Google Scholar
  35. 35.
    D. A. Prokoshkin, B. N. Arzamosov, E. V. Ryabchenko, and I. A. Mikhailov, Production of Coatings in a Glow Discharge, in Protective Coatings on Metals (G. V. Samsonov, ed.). Vol. 3, pp. 1–6, Consultants Bureau, New York (1971).Google Scholar
  36. 36.
    R. L. Samuel and N. A. Lockington, Protection of Nickel-Base Alloys Against Thermal Corrosion, Chem. Proc. Engr. 45(5), 249–252 (1964); The Diffusion of Chromium and Other Elements Into Nonferrous Metals, Trans. Inst. Met. Finishing 31, 153–166 (1954).Google Scholar
  37. 37.
    G. Llewelyn, Protection of Nickel-Base Alloys Against Sulfur Corrosion by Pack Aluminizing, in Hot Corrosion Problems Associated With Gas Turbines, ASTM-STP-421 (Sept. 1967).Google Scholar
  38. 38.
    P. N. Walsh, Chemical Aspects of Pack Cementation, in Chemical Vapor Deposition, pp. 147–168, The Electrochemical Society, Princeton, N.J. (1973).Google Scholar
  39. 39.
    L. W. Derry and R. L. Samuel, Protection Against Thermal Corrosion, Chem. Proc. Engr. 578–582 (Nov. 1962).Google Scholar
  40. 40.
    M. Hansen, Constitution of Binary Alloys (2nd ed.), McGraw-Hill, New York (1958).Google Scholar
  41. 41.
    R. P. Elliot, Constitution of Binary Alloys, First Sup, McGraw-Hill, New York (1965).Google Scholar
  42. 42.
    F. A. Shunk, Constitution of Binary Alloys, Second Suppl., McGraw-Hill, New York (1969).Google Scholar
  43. 43.
    A. U. Seybolt, Investigation of the Basic Parameters Affecting the Properties of Inter- metallic Compounds, WADC-TD-184, Part VI (June 1965).Google Scholar
  44. 44.
    R. L. Wachtell, An Investigation of Various Properties of Nl, WADC Tech. Report 52–291 (Sept. 1952).Google Scholar
  45. 45.
    G. Romeo and D. W. Mee, The Na2S04-Induced Corrosion Properties of Ni-Base Superalloy Phases, J. Electrochem. Soc. 122(2), 188–199 (1975).CrossRefGoogle Scholar
  46. 46.
    V. S. Moore, W. D. Brenthall, and A. R. Stetson, Evaluation of Coatings for Cobalt- and Nickel-Base Superalloys, NASA Contract. Rep. 72714 (July 1970).Google Scholar
  47. 47.
    P. M. Robinson and M. B. Bever, Intermetallic Compounds, p. 42, John Wiley, New York (1967).Google Scholar
  48. 48.
    T. K. Redden, Nl Coating-Base Metal Interactions in Several Nickel-Base Alloys, Trans. TMS-AI ME 242(8), 1695–1702 (1968).Google Scholar
  49. 49.
    M. A. Levinstein and J. R. Stanley, Improved Aluminide Coatings for Nickel-Base Alloys, NASA Contract. Rep. 72863 (March 1971).Google Scholar
  50. 50.
    E. M. Grala, Investigations of Nl and Nil, in Mechanical Properties of Intermetallic Compounds (J. H. Westbrook, ed.), John Wiley, New York (1960).Google Scholar
  51. 51.
    S. Rideout, W. D. Manly, E. L. Kamen, B. S. Lement, and P. A, Beck, Intermediate Phases in Ternary Alloy Systems of Transition Elements, Trans. TMS-AI ME 191(10), 872–876 (1951).Google Scholar
  52. 52.
    G. W. Goward, D. H. Boone, and C. S. Giggins, Formation and Degradation Mechanisms of Aluminide Coatings on Nickel-Base Superalloys, Trans ASM Quart. 60–61, 228–241 (1967–68).Google Scholar
  53. 53.
    G. W. Goward and D. H. Boone, Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-Base Superalloys, Oxid. Met. 3(5), 475–495 (1971).CrossRefGoogle Scholar
  54. 54.
    M. M. P. Janssen and G. D. Rieck, Reaction Diffusion and Kirkendall-Effect in the Nickel-Aluminium System, Trans. Met. Soc. 239(9), 1372–1385 (1967).Google Scholar
  55. 55.
    L. S. Castleman and L. L. Seigle, Formation of Intermetallic Layers in Diffusion Couples, Trans. Met. Soc. AIME 209(10), 1173–1174 (1957).Google Scholar
  56. 56.
    L. S. Castleman and L. L. Seigle, Layer Growth During Interdiffusion in the Aluminum-Nickel System, Trans. Met. Soc. AIME 212(10), 589–596 (1958).Google Scholar
  57. 57.
    C. L. Angerman, Metallographic Studies of Al-Ni-U Bonds in Nuclear Fuel Elements, Trans. ASM Quart. 54, 260–275 (1961).Google Scholar
  58. 58.
    L. S. Castleman and H. A. Froot, Nucleation of Intermetallic Phases in Aluminum-Nickel Diffusion Couples, Trans. ASM Quart. 56, 205–208 (1963).Google Scholar
  59. 59.
    M. M. P. Janssen, Diffusion in the Nickel-Rich Part of the Ni-Al System at 1000 to 1300°C; Nl Layer Growth, Diffusion Coefficients, and Interface Concentrations, Met. Trans. 4(6), 1623–1633 (1973).Google Scholar
  60. 60.
    R. Sivakumar, N. B. Menon, and L. L. Seigle, Boundary Conditions for Diffusion in the Pack-Aluminizing of Nickel, Met. Trans. 4(6), 396–398 (1973).CrossRefGoogle Scholar
  61. 61.
    V. T. Borisov, V. M. Goltkov, and G. N. Dubinin, Diffusion Cladding of Metals (G. V. Samsonov, ed.), pp. 17–23, English Transl., Consultants Bureau, New York (1967).CrossRefGoogle Scholar
  62. 62.
    C. Wagner, The Evaluation of Data Obtained with Different Couples of Binary Single Phase and Muhiphase Systems, Acta Met. 17(2), 99–107 (1969).CrossRefGoogle Scholar
  63. 63.
    R. Sivakumar, Ph.D. Thesis, State Univ. of New York at Stony Brook (1975).Google Scholar
  64. 64.
    S. R. Levine and R. M. Caves, Thermodynamics and Kinetics of Pack Aluminide Coating Formation on IN-100, J. Electrochem. Soc. 121(8), 1051–1064(1974).CrossRefGoogle Scholar
  65. 65.
    H. Brill-Edwards and M. Epner, Effect of Material Transfer Mechanisms on the Formation of Discontinuities in Pack Cementation Coatings on Superalloys, Electrochem. Tech. 6(9–10), 229–307 (1968).Google Scholar
  66. 66.
    H. N. Browne, M. M. Williams, and D. R. Cruise, NOTS-TP-2434, NAVWEPS Report 7043 (AD-246–591), U.S. Naval Ordnance Test Station, China Lake, Calif. (1960).Google Scholar
  67. 67.
    S. Gordon and B. J. Mride, NASA SP-273 (1971).Google Scholar
  68. 68.
    P. T. Kolomytsev, P. P. Lebedev, and L. A. Kostina, Effectiveness of Diffusion Metallizing as a Means of Increasing the Life of Gas Turbine Blades, in Protective Coatings on Metals, Vol. 4, pp. 193–197 (G. V. Samsonov, ed.), Consuhants Bureau, New York (1972).Google Scholar
  69. 69.
    P. Galmiche, in AGARD Conf. Proc. No. 73 on High Temperature Materials, NASA, Langley Field, Va., Paper 20; Met. Mater. 2(4), 241 (1968).Google Scholar
  70. 70.
    David J. Levine and Moses A. Levinstein, Metallic Surface Treatment Material, U.S. Patent 3,540,878 (Nov. 17, 1970).Google Scholar
  71. 71.
    J. F. Nejedlik, Development of Improved Coatings for Nickel- and Cobalt-Base Alloys, AFML-TR-70–208 (December 1970).Google Scholar
  72. 72.
    A. J. Bradley and A. Taylor, An X-Ray Analysis of the Nickel-Aluminum System, Proc. R. Soc. (Lond.) A159, 56–72 (1937).CrossRefGoogle Scholar
  73. 73.
    M. J. Fleetwood, Influence of Nickel-Base Alloy Composition on the Behavior of Pro tective Aluminide Coatings, J. Inst. Met. 98, 1–7 (1970).Google Scholar
  74. 74.
    A. Davin and D. Coutsouradis, Hot Corrosion of Experimental Aluminum-Coated Cobalt-Base Alloys, Cobalt 55(6), 99–101 (1972).Google Scholar
  75. 75.
    S. Rosen and J. A. Goebel, The Crystal Structure of Ni-rich Nl and Martensitic Nl, Trans. Met. Soc. AIME 242(4) 722–724 (1968).Google Scholar
  76. 76.
    J. L. Smialik, Martensite in Nl Oxidation Resistant Coatings, Met. Trans. 2(3), 913–915 (1971).CrossRefGoogle Scholar
  77. 77.
    J. L. Smialek and R. F. Hehemann, Transformation Temperature of Martensite in i5-Phase Nickel Aluminide, Met. Trans. 4(6), 1571–1575 (1973).Google Scholar
  78. 78.
    A. Ball, Observation of a Martensitic Transformation in the Compound Nl, Met. Sci. J. 1, 47–48 (March 1967).Google Scholar
  79. 79.
    D. B. Masson, Composition-Temperature Behavior of the Martensitic Transformation in Beta Ad, Trans. Met. Soc. AI ME 218(2), 94–97 (1960).Google Scholar
  80. 80.
    N. Ridley and H. Pops, Martensitic Transformation in Binary and Ternary Alloys Based on the An Beta Prime Phase, Met. Trans. 1(10), 2867–2873 (1970).Google Scholar
  81. 81.
    D. Chatterji, D. W. Mee, and A. Ritzer, Effects of Alloying Elements on the Martensitic Transformation of Nl, to be pushed.Google Scholar
  82. 82.
    Per Kofstad, High Temperature Oxidation of Metals, John Wiley, New York (1966).Google Scholar
  83. 83.
    B. E. Deal and A. S. Grove, General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys. 36(12), 3770–3778 (1965).CrossRefGoogle Scholar
  84. 84.
    R. A. Perkins and C. M. Parker, Coatings for Refractory Metals in Aerospace Environment, AFML-TR-65–351 (Sept. 1965).Google Scholar
  85. 85.
    S. J. Grisaffe, D. L. Deadmore, and W. J. Sanders, Furnace and High Velocity Oxidation of Aluminide Coated Cobalt Superalloy WI-52, NASA Tech. Note D-5834 (May 1970).Google Scholar
  86. 86.
    A. U. Seybolt, quoted by Levinstein and Stanley, Ref. 46.Google Scholar
  87. 87.
    I. G. Wright, Oxidation of Iron-, Nickel-, and Cobalt-Base Alloys, Metals and Ceramics Information Center Report MCIC-72–07, Battelle-Columbus, Ohio (1972).Google Scholar
  88. 88.
    D. Chatterji, A. Hampton, H. C. Graham, and H. H. Davis, A Comparative Study of the Oxidation Behaviors of Ni-18Cr and Ni-18Cr-f, in Int. Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Princeton, N.J. (May 1975).Google Scholar
  89. 89.
    D. W. Mee, D. Chatterji, G. Romeo, and H. S. Spacil, Hot Corrosion of High Temperature Alloys in Lead-Contaminated Sodium Sulphate, in Ref. 85.Google Scholar
  90. 90.
    D. Chatterji, D. W. Mee, G. Romeo, and H. S. Spacil, The Effects of Lead on the Hot Corrosion of Nickel-Base Alloys, J. Electrochem. Soc. 122(7), 941–952 (1975).CrossRefGoogle Scholar
  91. 91.
    J. A. Goebel, F. S. Pettit, and G. W. Goward, Mechanisms for the Hot Corrosion of Nickel-Base Alloys, Met Trans. 4(1), 261–278 (1973).CrossRefGoogle Scholar
  92. 92.
    P. J. Anderson, D. H. Boone, and G. F. Paskiet, A Comparison of the Effect of Inward and Outward Diffusion Aluminide Coatings on the Fatigue Behavior of Nickel-Base Superalloys, Oxid. Met. 4(2), 113–119 (1972).CrossRefGoogle Scholar
  93. 93.
    R. S. Bartocci, Behavior of High Temperature Coatings for Gas Turbine Engines in Hot Corrosion Problems Associated with Gas Turbines, ASTM-STP-421 (Sept. 1967).Google Scholar
  94. 94.
    R. L. Marron, N. R. Lindblad, and D. Chatterji, “Environmental Resistance of Pure and Doped y’-Nil and j-Nl”, in the Annual Meeting of the National Association of Corrosion Engineers, Toronto, Canada (May 1975), General Electric Report 75CRD.Google Scholar
  95. 95.
    A. Taylor and R. W. Floyd, The Constitution of Nickel-Rich Alloys of Nickel-Chromium-Aluminum System, J. Inst. Met. 81, 451–464 (1952–53).Google Scholar
  96. 96.
    G. Lehnert and H. W. Meinhardt, A New Protective Coating for Nickel Alloys, Electrodep. Surf. Treat. 1, 189–197 (1972–73).CrossRefGoogle Scholar
  97. 97.
    Production of Protective Layers on Cob-Based Alloys, U.K. Patent 1,282,530 (1970).Google Scholar
  98. 98.
    G. Lehnert and H. W. Meinhardt, LDC-2, eine neue Schutzchicht für Nickellegierungen, DEW-Techniche Berichte 11(4), 236–240 (1971).Google Scholar
  99. 99.
    J. L. Smialek, Fused Silicon-Rich Coatings for Superalloys, NASA Tech. Memo. X-3001 (March 1974).Google Scholar
  100. 100.
    D. W. Mee and G. Romeo, Effects of Transient Carbon Deposition on the Sodium Sulphate-Induced Hot Corrosion of Nickel-Base Alloys, Met. Trans. 6A(1), 101–109 (1975).Google Scholar
  101. 101.
    M. E. El-Dahshan, J. Stringer, and D. P. Whittle, The Effect of Carbon on the Hot Corrosion of Cobalt-base Alloys, Cobalt 57, 182–201 (Dec. 1972).Google Scholar
  102. 102.
    A. U. Seybolt and Eric Lifshin, A Study of Pack Process Aluminide Coatings on Nickel-Base Alloys, General Electric Report. 70-C-229 (July 1970).Google Scholar
  103. 103.
    P. C. Felix and H. Beutler, CVD-Silicon Coatings for the Corrosion Protection of Turbine Blades in Proc. Third International Conference on Chem. Vapor Deposition, The Electrochem. Soc., Princeton, N.J. (1972).Google Scholar
  104. 104.
    P. Felix and E. Erdos, CVD-Silicon Coatings for Protection of Stationary Gas Turbines, Werk. Korrosion 8, 627–636 (1972).CrossRefGoogle Scholar
  105. 105.
    C. S. Giggins and F. S. Pettit, Oxidation of Ni-Cr Alloys Between 800° and 1200°C, Trans. Met. Soc.-AIME 245(12) 2495–2507 (1969).Google Scholar
  106. 106.
    H. C. Graham and H. H. Davis, Vaporization of Chromium Oxide, J. Am. Ceram. Soc. 54(2), 89–93 (1971).CrossRefGoogle Scholar
  107. 107.
    J. Stringer, B. A. Wilcox, and R. I. Jaffee, The High-Temperature Oxidation of Nickel-20 wt% Chromium Alloys Containing Dispersed Oxide Phases, Oxid. Met 5(1), 11–47 (1972).CrossRefGoogle Scholar
  108. 108.
    D. A. Shores, Electrochemical Aspects of Hot Corrosion Reactions on Coating/Substrate Systems, Abstract No. 89, Fall Meeting of the Electrochem. Soc., Boston (1973).Google Scholar
  109. 109.
    J. W. Omer, Nondestructive Testing of Protective Coating Systems, AFML-TR-70–226 (Dec. 1970).Google Scholar
  110. 110.
    P. E. Hamilton, K. H. Ryan, and E. S. Nichols, Nickel-Base Alloys and Their Relationship to Hot Corrosion Environments, in Hot Corrosion Problems Associated With Gas Turbines, ASTM-STP-421 (Sept. 1967).Google Scholar
  111. 111.
    L. D. Graham, J. D. Gadd, and R. J. Quigg, Hot Corrosion Behavior of Coated and Uncoated Superalloys, in Ref. 110.Google Scholar
  112. 112.
    W. L. Wheatfall, H. Doering, and G. J. Danek, Jr., Behavior of Superalloy Oxide Films in Mohen Salts, in Ref. 110.Google Scholar
  113. 113.
    A. Davin, D. Coutsouradis, and L. Habraken, Development and Properties of Cobalt-Base Alloys with Improved Hot Corrosion Resistance, Cobalt 57(12), 175–181 (1972).Google Scholar
  114. 114.
    J. Huminik, High Temperature Inorganic Coatings, Reinhold Publishing, New York (1963).Google Scholar
  115. 115.
    P. Lane, Jr., and N. M. Geyer, A Critical Look at Superalloy Coatings for Gas Turbine Components, J. Met. 18(2), 186–191 (1966).Google Scholar
  116. 116.
    F. P. Talboom and J. A. Petrusha, Superalloy Coatings for Components for Gas Turbine Engine Applications, AFML-TR-66–15 (February 1966).Google Scholar
  117. 117.
    P. J. Piearcey, Heat Treatment of Nickel-Base Alloys, U.S. Patent. 3,310,440 (March 21, 1967).Google Scholar
  118. 118.
    C. H. Wells and C. P. Sullivan, Low Cycle Fatique of Udimet 700 at 1700°F, Trans. ASM Quart. 60, 149–155 (March 1968).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • D. Chatterji
    • 1
  • R. C. DeVries
    • 1
  • G. Romeo
    • 2
  1. 1.Corporate Research and DevelopmentGeneral Electric CompanySchenectadyUSA
  2. 2.Vallecitos Nuclear CenterGeneral Electric CompanyPleasantonUSA

Personalised recommendations