Correlations and Total Muon Capture Rates

  • Aram Mekjian
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 45)


The total muon capture rate for s-wave muons can be accounted for by the Primakoff expression which gives the dependence of this rate on the mass number A and the proton number Z of the absorbing nucleus. The expression is a simple three parameter phenomenological formulae which accurately describes these rates from light weight nuclei to heavy nuclei. These parameters relate to the isospin structure of the squared isovector operator which appears in a sum rule approach to such rates. A microscopic analysis of the parameters appearing in the capture rate expression is presented in the light of recent developments concerning photonuclear reactions. A shell model analysis is given and it is found that the predictions of the unperturbed shell model and also Hartree-Fock theory are in complete disagreement with the data. Considerable improvement is obtained when long range correlations are included in the ground state wave function of the absorbing nucleus.


Shell Model Capture Rate Giant Dipole Resonance Photonuclear Reaction Ground State Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Primakoff, Rev. of Mod. Phys. 31, 802 (1959).ADSMATHCrossRefGoogle Scholar
  2. 2.
    B. Goulard and H. Primakoff, Phys. Rev. C10, 2034 (1974).ADSGoogle Scholar
  3. 3.
    A. Mekjian, Phys. Rev. Lett. 36, 1242 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Luyten, H.C. Rood and H.A. Tolhoek, Nucl. Phys. 41, 236 (1963).CrossRefGoogle Scholar
  5. J. Joseph, F. Ledoyen and B. Goulard, Phys. Rev. C16, 1742 (1972).ADSGoogle Scholar
  6. 6.
    L.L. Foldy and J.D. Walecka, Nuovo Cimen. XXXIV, No. 4, 1026 (1964).CrossRefGoogle Scholar
  7. 7.
    R.J. McCarthy and G.E. Walker, Phys. Rev. C11, 383 (1975).ADSGoogle Scholar
  8. 8.
    J.S. Levinger, Nuclear Photodisintegration (Oxford University Press, Oxford, 1960).Google Scholar
  9. 9.
    A.M. Lane and A.Z. Mekjian, Phys. Rev. C8, 1981 (1973).ADSGoogle Scholar
  10. 10.
    A. Veipsiere et al., Nucl. Phys. A159, 561 (1970).ADSGoogle Scholar
  11. 11.
    D. Vautherin, private communication.Google Scholar
  12. 12.
    Ahrens et al.. Proceedings Intern. Conf. on Nuclear Structure Studies, Sendoi, Japan, 1972.Google Scholar
  13. 13.
    W.T. Weng, T.T.S. Kuo and G.E. Brown, Phys. Lett. 46B, 329 (1973).ADSGoogle Scholar
  14. 14.
    R.A. Bryan and B.L. Scott, Phys. Rev. 177, 1435 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    D.M. Brink and R. Leonardi, Nucl. Phys. A258, 285 (1976).ADSGoogle Scholar
  16. 16.
    A.Z. Mekjian and W.M. MacDonald, Phys. Rev. C15, 531 (1977).ADSGoogle Scholar
  17. 17.
    G.E. Brown and M. Bolsterli, Phys. Rev. Lett. 3, 472 (1959).ADSCrossRefGoogle Scholar
  18. 18.
    J. Negele and D. Vautherin, Phys. Rev. C5, 1472 (1972).ADSGoogle Scholar
  19. 19.
    G. Do Dang, Phys. Lett. 38B, 397 (1972).ADSGoogle Scholar
  20. 20.
    J. Bernabeu, Nucl. Phys. A201, 41 (1973); A215, 411 (1973)ADSGoogle Scholar
  21. J. Bernabeu and F. Cannata, Phys. Lett. 45B, 445 (1973); Nucl. Phys. A215, 424 (1973).ADSGoogle Scholar
  22. R. Rosenfelder, Nucl. Phys. A298, 397 (1978).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Aram Mekjian
    • 1
  1. 1.Department of PhysicsRutgers UniversityNew BrunswickUSA

Personalised recommendations