Skip to main content
Log in

Muon capture in nuclei

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Theoretical calculations of the total capture rate for muons in certain light nuclei (40Ca,16O,12C,4He) have been carried out with cognizance taken of the important role played by giant dipole resonances in the capture process. The calculation involves the following steps: 1) Relating the dipole contribution of the vector interaction to its unretarded value by the use of the ground-state elastic form factor. 2) Relating the unretarded dipole part of the vector interaction to an integral over the photo-disintegration cross-section (by the use of isotopic-spin invariance) and using empirical photo-disintegration data to evaluate this contribution. 3) Using the Wigner supermultiplet theory to relate the matrix elements of the axial vector and induced pseudoscalar interaction to those of the vector interaction. 4) Using the shell model (with and without the closure approximation) to evaluate other multipolar contributions and recoil correction terms. The assumptions implicit in the above steps have been examined in as much detail as present knowledge permits. In particular, arguments are given on the basis of several models to justify step 1). The basic assumption involved in the supermultiplet theory used in step 3) is that of weak spin-dependence of the forces. This theory predicts that the giant electric dipole resonance is one of a family (vector supermultiplet) of giant resonances involving spins and isospins. Evidence for the existence of at least one other such resonance is shown to exist in inelastic electron scattering data on16O. The effect of spin-dependence of the forces in splitting this giant resonance supermultiplet is investigated by examining the 0, 1, and 2 particle-hole states calculated by Lewis for16O: its effect in our calculations is relatively small. Agreement between theory and experiment is within the uncertainties of both (but with the possibility of a real discrepancy in1He) thus exhibiting general consistency of muon capture with the universality of weak interactions. Inelastic electron scattering data can be a rich source of information to serve as the basis for better calculations and for exploring the giant resonance supermultiplet.

Riassunto

Si sono eseguiti calcoli teorici del rapporto di cattura totale dei muoni in alcuni nuclei leggeri (40Ca,16O,12C,4He) tenendo conto del ruolo importante che la risonanza gigante di dipolo ha nel processo di cattura. Il calcolo comprende i seguenti passaggi: 1) Si mette in relazione il contributo di dipolo dell’interazione vettoriale con il suo valore non ritardato a mezzo del fattore di forma elastico dello stato fondamentale. 2) Si mette in relazione la parte dipolare non ritardata dell’interazione vettoriale con un integrale nelle sezioni efficaci della fotodisintegrazione (facendo uso dell’invarianza dello spin sotopico), servendosi di dati empirici sulla fotodisintegrazione per valutare questo contributo. 3) Si fa uso della teoria del supermultipletto di Wigner per mettere in relazione gli elementi di matrice dell’interazione vettoriale assiale e pseudoscalare indotta con quelli dell’interazione vettoriale. 4) Si fa uso del modello a strati (con e senza approssimazione di chiusura) per valutare altri contributi multipolari e termini di correzione di rinculo. Si sono esaminate le ipotesi implicite nei suddetti passaggi tanto dettagliatamente quanto consentono le attuali conoscenze. In particolare, sulla base di parecchi modelli si dànno ragioni per giustificare il passaggio 1). L’ipotesi fondamentale compresa nella teoria del supermultipletto usato nel passaggio 3) è la debole dipendenza delle forze dallo spin. Questa teoria predice che la risonanza gigante di dipolo elettrico fa parte di una famiglia (supermultipletto vettoriale) di risonanze giganti che interessano gli spin e gli isospin. Si dimostra che esistono nei dati dello scattering anelastico degli elettroni su16O prove dell’esistenza di almeno un’altra risonanza del genere. Si studia l’effetto della dipendenza delle forze dallo spin sulla separazione di questo supermultipletto di risonanza gigante, esaminando gli stati particella-lacuna 0, 1−1 e 2, calcolati da Lewis per il16O; il suo effetto sui nostri calcoli è relativamente piccolo. L’accordo fra teoria ed esperimento sta entro i limiti di incertezza di entrambi (ma con la possibilità di una effettiva discordanza per il4He) dimostrando così la concordanza generale delle catture dei muoni con l’universalità delle interazioni deboli. I dati sullo scattering anelastico degli elettroni possono essere una ricca fonte di informazione che può servire di base per calcoli più accurati e per esplorare il supermultipletto della risonanza gigante.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Primakoff:Rev. Mod. Phys.,31, 802 (1959).

    Article  ADS  MATH  Google Scholar 

  2. H. A. Tolhoek andJ. R. Luyten:Nucl. Phys.,3, 679 (1957);H. A. Tolhoek:Nucl. Phys.,10, 327 (1959).

    Article  MATH  Google Scholar 

  3. R. Klein andL. Wolfenstein:Phys. Rev. Lett.,9, 408 (1962).

    Article  ADS  MATH  Google Scholar 

  4. J. S. Bell andJ. Løvseth:Nuovo Cimento,17, 408 (1964).

    Google Scholar 

  5. J. R. Luyten, H. P. C. Rood andH. A. Tolhoek:Nucl. Phys.,41, 236 (1963).

    Article  Google Scholar 

  6. The significance of giant resonances in the μ-capture process has been independently noted byBalashov, Belyaev, Kabachnik, andEramzhian (6) who use the resonance picture as a basis for estimating the neutron spectrum from μ capture in16O and40Ca but make no attempt to calculate total capture rates. We thank ProfessorD. Wiukinson for bringing this work to our attention.

  7. V. V. Balashov, V. B. Belyaev, N. M. Kabachnik andR. A. Eramzhlan: Dubna preprint P 1530 (1964).

  8. J. Tiomno andJ. A. Wheeler:Rev. Mod. Phys.,21, 153 (1949).

    Article  ADS  MATH  Google Scholar 

  9. J. P. Elliott andB. H. Flowers:Proc. Roy. Soc.,242 A, 57 (1957).

    Article  ADS  Google Scholar 

  10. G. E. Brown andM. Bolsterli:Phys. Rev. Lett.,3, 472 (1959);G. E. Brown, L. Castillejo andJ. A. Evans:Nucl. Phys.,22, 1 (1961);N. Vinh Mau andG. E. Brown:Nucl. Phys.,29, 89 (1962).

    Article  ADS  Google Scholar 

  11. Using our ideas discussed above,Sens et al. (10) have recently shown that by simply shifting the energies of the shell-model dipole states of L.R.T. to their empirically observed values, approximate consistency with U.F.I. is established for16O and40Ca. The extent to which this is a valid procedure is discussed in the conclusion.

    Article  ADS  Google Scholar 

  12. We note that the conserved vector current theory (11) allows one to exactly relate the vector part of muon capture to electron scattering from theT=0 ground state to theT=1 excited states with the same energy loss and momentum transfer to the nucleus but that the existing electron scattering data are not much help in evaluating the total capture rates.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Barlow, J. C. Sens, P. J. Duke andM. A. R. Kemp:Phys. Lett.,9, 84 (1964).

    Article  ADS  Google Scholar 

  14. R. P. Feynman andM. Gell-Mann:Phys. Rev.,109, 193 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. E. Wigner:Phys. Rev.,51, 106 (1937).

    Article  ADS  MATH  Google Scholar 

  16. A. E. Glassgold, W. Heckrotte andK. M. Watson:Ann. of Phys.,6, 1 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Fallieros, R. Ferrell andM. K. Pal:Nucl. Phys.,15, 363 (1960).

    Article  Google Scholar 

  18. M. Goldhaber andE. Teller:Phys. Rev.,74, 1046 (1948).

    Article  ADS  MATH  Google Scholar 

  19. F. H. Lewis jr.:Phys. Rev.,134, B 331 (1964) and private communication.

    Article  ADS  Google Scholar 

  20. These calculations are similar in spirit to those carried out byElliott andFlowers (8) andBrown (9).

    Article  ADS  Google Scholar 

  21. S. Weinberg:Phys. Rev.,112, 1375 (1958).

    Article  ADS  MATH  Google Scholar 

  22. C. de Vries, R. Hofstadter andA. Johansson:Proc. of Stanford University Conference on Nucleon Structure, 1963 (to be published).

  23. A. Fujii andH. Primakoff:Nuovo Cimento,12, 327 (1959).

    Article  MathSciNet  Google Scholar 

  24. Communication fromC. S. Wu toF. Gürsey, T. D. Lee andM. Nauenberg: quoted in Columbia University preprint.

  25. M. L. Goldberger andS. B. Treiman:Phys. Rev.,111, 354 (1958).

    Article  ADS  MATH  Google Scholar 

  26. Y. Nambu:Phys. Rev. Lett.,4, 380 (1960).

    Article  ADS  MATH  Google Scholar 

  27. L. Wolfenstein:Nuovo Cimento,8, 882 (1958).

    Article  Google Scholar 

  28. J. C. Sens:Phys. Rev.,113, 679 (1958).

    Article  ADS  Google Scholar 

  29. J. Goldemberg, Y. Torizuka, W. C. Barber andJ. D. Walecka:Nucl. Phys.,43, 242 (1963).

    Article  Google Scholar 

  30. D. M. Brink:Nucl. Phys.,4, 215 (1957).

    Article  Google Scholar 

  31. G. R. Bishop andD. B. Isabelle:Nucl. Phys.,45, 209 (1963).

    Article  Google Scholar 

  32. The angular momentum notation followsEdmonds (28).

  33. A. R. Edmonds:Angular Momentum in Quantum Mechanics (Princeton, N. J., 1957).

  34. W. C. Barber andJ. Goldemberg (to be published).

  35. F. H. Lewis jr. andJ. D. Walecka:Phys. Rev.,133, B 849 (1964).

    Article  ADS  Google Scholar 

  36. R. Cohen, S. Devons andA. D. Kanaris:Phys. Rev. Lett.,11, 134 (1963).

    Article  ADS  Google Scholar 

  37. A. N. Gorbunov andV. M. Spiridonov:Žurn. Ėksp. Teor. Fiz.,34, 866 (1958);Sov. Phys. JETP,7, 600 (1958).

    Google Scholar 

  38. L. L. Foldy:Phys. Rev.,107, 1303 (1957); see alsoM. L. Rustgi andJ. S. Levinger:Phys. Rev.,106, 530 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  39. See refs. (34,35) for an analysis of the extensive experimental data.

  40. E. G. Fuller andE. Hayward:Nuclear Reactions, edited byP. M. Endt andP. B. Smith (Amsterdam, 1962), vol.2, Chap. III.

  41. E. Hayward:Rev. Mod. Phys.,35, 324 (1963).

    Article  ADS  Google Scholar 

  42. A. N. Gorbunov andV. A. Osipova:Žurn. Ėksp. Teor. Fiz.,34, 866 (1958);Sov. Phys. JEPT,16, 27 (1963).

    Google Scholar 

  43. B. Goulard, G. Goulard andH. Primakoff:Phys. Rev.,133, B 186 (1964).

    Article  ADS  Google Scholar 

  44. L. J. Tassie andF. C. Barker:Phys. Rev.,111, 940 (1958).

    Article  ADS  Google Scholar 

  45. M. Eckhouse:Thesis, Carn. Inst. of Techn., Dept. of Physics, Pittsburgh, (NYO-9286, February 1962).

  46. R. A. Reiter, T. A. Romanowski, R. B. Sutton andB. G. Chidley:Phys. Rev. Lett.,5, 22 (1960).

    Article  ADS  Google Scholar 

  47. J. L. Lathrop, R. A. Lundy, V. L. Telegdi, R. Winston andD. D. Yovanovitch:Phys. Rev. Lett.,7, 107 (1961).

    Article  ADS  Google Scholar 

  48. M. Bloch: private communication.

  49. R. Bizzarri, E. Di Capua, U. Dore, G. Gialanella, P. Guidoni andI. Laakso (to be published inNuovo Cimento).

  50. Equations (8.21) to (8.24) of L.R.T. give the same result asPrimakoff et al. (37) for4He.

    Article  ADS  Google Scholar 

  51. After completing this manuscript, the authors realized that an estimate of the allowed contributions is possible. The allowed transitions can be written as a sum over state in12C is known to exist at 15.1 MeV (it is the isobaric partner of the ground state of12B). The transition is sufficiently strong that it is unlikely to arise purely from the orbital magnetic moment. Thus presumably there is a substantial spin-flip contribution which can only arise if the ground state is not a pure scalar supermultiplet. The relatively rapid β-decay of12B is further evidence for this. Inelastic electron scattering data (29) allow us to estimate the transition moment at the momentum transfer appropriate to muon capture and hence to estimate the allowed axial vector contribution to muon capture for the transition from the ground state of12C to the ground state of12B. This calculated contribution amounts to (0.07±0.02)·105 s−1, in agreement with the latest experimental value of (0.0675 +.0030c−.0075 )·1015 s−1 (44), thus representing about 20% of the total capture rate. If this is added to our previous estimate for forbidden transitions, we obtain 0.33·105 s−1 for the capture rate in12C in satisfactory agreement with the experimental value. However, our previous estimate for forbidden transitions is now less reliable since we have evidence that the supermultiplet approximation is breaking down more seriously than was anticipated for12C.

  52. E. J. Maier R. T. Edelstein andR. T. Siegal,Phys. Rev.,133, B 663, (1964).

    Article  ADS  Google Scholar 

  53. G. Abraham, L. Cohen andA. S. Roberts:Proc. Phys. Soc., A68, 265 (1955).

    Article  ADS  Google Scholar 

  54. C. A. Caine andP. S. H. Jones:Nucl. Phys.,44, 177 (1963).

    Article  Google Scholar 

  55. A recently reported measurement byKaplan et al. (47) of the average neutrino momentum for capture in40Ca yields (90±2) MeV/c in precise agreement with what we would expect on the basis of our method of calculation since both the dipole and quadrupole transitions will give a relatively narrow peak at this value.

    Google Scholar 

  56. S. N. Kaplan, B. Macdonald andR. V. Pyle:Bull. Am. Phys. Soc.,9, 393 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foldy, L.L., Walecka, J.D. Muon capture in nuclei. Nuovo Cim 34, 1026–1061 (1964). https://doi.org/10.1007/BF02812528

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02812528

Navigation