DNA Polymerase III Holoenzyme of Escherichia Coli: An Asymmetric Dimeric Replicative Complex Containing Distinguishable Leading and Lagging Strand Polymerases

  • C. S. McHenry
  • K. O. Johanson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)


The DNA polymerase III holoenzyme is the major replicative enzyme in Escherichia coli (for a review see ref. 1). A final definition of the enzyme’s structure has not yet been accomplished, but it is apparent that it contains at least seven different subunits: α, ε, θ, β, δ, γ and τ (2–4). The holoenzyme contains a catalytic core, termed DNA polymerase III, composed of the α, ε and θ subunits. DNA polymerase III can catalyze limited synthesis in short gaps created by nuclease treatment of duplex DNA, but it is inactive in reconstituted natural Escherichia coli replication systems (3, 5).


Replication Fork Initiation Complex Functional Asymmetry Okazaki Fragment Final Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McHenry, C.S. and Kornberg, A. (1982) in: The Enzymes, P. Boyer, ed., Academic Press, New York.Google Scholar
  2. 2.
    McHenry, C.S. and Romberg, A. (1977) J. Biol. Chem. 252, 6478.PubMedGoogle Scholar
  3. 3.
    McHenry, C.S. and Crow, W. (1979) J. Biol. Chem. 254, 1748.PubMedGoogle Scholar
  4. 4.
    McHenry, C.S. (1982) J. Biol. Chem. 257, 2657.PubMedGoogle Scholar
  5. 5.
    Livingston, D.M., Hinkle, D.C. and Richardson, C.C. (1975) J. Biol. Chem. 250, 461.PubMedGoogle Scholar
  6. 6.
    Sinha, N.K., Morris, CF. and Alberts, B.M. (1980) J. Biol. Chem. 255, 4290.PubMedGoogle Scholar
  7. 7.
    Kornberg, A. (1982) DNA Replication, Supplement, W.H. Freeman and Co., San Francisco.Google Scholar
  8. 8.
    Johanson, K.O. and McHenry, C.S. (1980) J. Biol. Chem. 255, 10984.PubMedGoogle Scholar
  9. 9.
    Wickner, W. and Kornberg, A. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3679.PubMedCrossRefGoogle Scholar
  10. 10.
    Wickner, S. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 3511.PubMedCrossRefGoogle Scholar
  11. 11.
    Johanson, K.O. and McHenry, C.S. (1982) J. Biol. Chem. 257, 12310.PubMedGoogle Scholar
  12. 12.
    Burgers, P.M.J. and Romberg, A. (1982) J. Biol. Chem. 257, 11468.PubMedGoogle Scholar
  13. 13.
    Burgers, P.M.J. and Romberg, A. (1982) J. Biol. Chem. 257, 11474.PubMedGoogle Scholar
  14. 14.
    Johanson, K. and McHenry, C.S. (1984) submitted for publication.Google Scholar
  15. 15.
    Hübscher, U. and Ottiger, H.P. (1984) this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • C. S. McHenry
    • 1
  • K. O. Johanson
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe University of Texas Medical SchoolUSA-HoustonUSA

Personalised recommendations