Association between Primase and DNA Polymerase α in Murine Cells

  • Michel Philippe
  • Rose Sheinin
  • Anne-Marie De Recondo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)


In prokaryotes as well as in eukaryotes, extensive analysis of purified replicating DNA has shown that the Okazaki fragments are initiated by RNA primers (1). They are oligoribonucleotides, approximately 10 nucleotides in length, which are covalently attached to 5’-termini of newly synthesized DNA. They are not synthesized by any RNA polymerase involved in transcription but by another enzyme called primase. Such a primase has been described in eukaryotic cells by several authors (2–10). The primase purified from mouse hybridoma cells (10) was found to be very easily separable from DNA polymerase a, and the most highly purified fraction contained two major protein components of 56, 000 and 46, 000 daltons. In most cases however, the primase appeared to remain closely associated with DNA polymerase a (2–9) throughout all the steps in purification of the holoenzyme (3–9).


Permissive Temperature Okazaki Fragment Primase Activity Isoleucine Starvation Dalton Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kornberg, A. (1982) DNA replication, W. H. Freeman and co., San Francisco.Google Scholar
  2. 2.
    Yagura, T., Kozu, T. and Seno, T. (1982) J. Biochem. 91, 607.PubMedGoogle Scholar
  3. 3.
    Conaway, R. C. and Lehman, I. R. (1982) Proc. Natl. Acad. Sci. USA 79, 2523.PubMedCrossRefGoogle Scholar
  4. 4.
    Méchali, M. and Harland, R. M. (1982) Cell 30, 93.PubMedCrossRefGoogle Scholar
  5. 5.
    Tseng, B. Y. and Ahlem, C. N. (1982) J. Biol. Chem. 257, 7280.PubMedGoogle Scholar
  6. 6.
    Yagura, T., Kozu, T. and Seno, T. (1982) J. Biol. Chem. 257, 11121.PubMedGoogle Scholar
  7. 7.
    Riedel, H. D., König, H., Stahl, H. and Knippers, R. (1982) Nucleic Acids Res. 10, 5621.PubMedCrossRefGoogle Scholar
  8. 8.
    Shioda, M., Nelson, E. M., Bayne, M. L. and Benbow, R. M. (1982) Proc. Natl. Acad. Sci. USA 79, 7209.PubMedCrossRefGoogle Scholar
  9. 9.
    Hübscher, U. (1983) EMBO J. 2, 133.PubMedGoogle Scholar
  10. 10.
    Tseng, B. Y. and Ahlem, C. N. (1983) J. Biol. Chem. 258, 9845.PubMedGoogle Scholar
  11. 11.
    Kaguni, L. S., Rossignol, J. M., Conaway, R. C., Banks, G. R. and Lehman, I. R. (1983) J. Biol. Chem. 258, 9037.PubMedGoogle Scholar
  12. 12.
    Mechali, M., Abadiedebat, J. and de Recondo, A-M. (1980) J. Biol. Chem. 255, 2114.PubMedGoogle Scholar
  13. 13.
    Philippe, M., Abadiedebat, J., Tillit, J. and de Recondo, A-M., in preparation.Google Scholar
  14. 14.
    Slater, M. L. and Ozer, H. L. (1976) Cell 7, 289.PubMedCrossRefGoogle Scholar
  15. 15.
    Sheinin, R. and Lewis, P. N. (1980) Somat. Cell Genet. 6, 227.CrossRefGoogle Scholar
  16. 16.
    Sheinin, R., Dardick, I. and Doane, F. W., submitted.Google Scholar
  17. 17.
    Brennessel, B. A., Buhrer, D. P. and Gottlieb, A. A. (1978) Anal. Biochem. 87, 411.PubMedCrossRefGoogle Scholar
  18. 18.
    Philippe, M., Sheinin, R. and de Recondo, A-M., in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Michel Philippe
    • 1
  • Rose Sheinin
    • 2
  • Anne-Marie De Recondo
    • 1
  1. 1.Institut de Recherches Scientifiques sur le CancerUnité de Biologie et Génétique MoléculairesVillejuif CédexFrance
  2. 2.Department of Microbiology and ParasitologyUniversity of TorontoTorontoCanada

Personalised recommendations