Bilayer-Peptide Interactions

  • K. V. Damodaran
  • Kenneth M. MerzJr.


Biomembranes have a variety of important functions in living systems. Besides forming an envelope to the cell, they also have a regulatory function, serving as a barrier to the transport of matter between the cell and the outside world (Gennis, 1989). These latter processes involve interaction of the membrane lipids with membrane proteins and a variety of small molecules such as water, hormones, etc. Moreover, a detailed understanding of the interactions between lipid bilayers and small molecules and peptides can give useful insights into a variety of membrane phenomena such as passive and active permeation across cell membranes (Deamer and Bramhall, 1986), function of drugs and anesthetics (Lichtenberger et al, 1995), and membrane fusion and fusion inhibition (Bentz, 1993; Burger and Verkleij, 1990; White, 1992). Furthermore, bilayer models involving peptides can also be used as prototypes for understanding membrane protein interactions.


Molecular Dynamic Simulation Alkyl Chain Membrane Fusion Fusion Peptide Bilayer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen MP, Tildesley DJ (1987): Computer Simulation of Liquids. Oxford: Clarendon PressGoogle Scholar
  2. Alper HE, Stouch TR (1995): Orientation and diffusion of a drug analogue in biomembranes: Molecular dynamics simulations.J Phys Chem 99:5724–5731CrossRefGoogle Scholar
  3. Bassolino-Klimas D, Alper HE, Stouch TR (1995): Mechanism of solute diffusion through lipid bilayer membranes by molecular dynamics simulation. J Am Chem Soc: in pressGoogle Scholar
  4. Bassolino-Klimas D, Alper HE, Stouch TR (1993): Solute diffusion in lipid bilayer membranes: An atomic level study by molecular dynamics simulation. Biochemistry 32:12624–12637PubMedCrossRefGoogle Scholar
  5. Bauerle HD, Seelig J (1991): Interaction of charged and uncharged calcium channel antagonists with phospholipid membranes. Binding equilibrium, binding enthalpy and membrane location. Biochemistry 30:7203–7211PubMedCrossRefGoogle Scholar
  6. Bentz J, ed. (1993): Viral fusion mechanisms. Boca Raton: CRC PressGoogle Scholar
  7. Bentz J, Alford D, Ellens H (1992): Liposomes, membrane fusion and cytoplasmic delivery. In: The Structure of Biological Membranes, Yeagle PL, ed. Boca Raton: CRC PressGoogle Scholar
  8. Berendsen HJC, Grigera, JR, Straatsma TP (1987): The missing term in effective pair potentials.J Phys Chem 91:6289–6271CrossRefGoogle Scholar
  9. Beschiaschvili G, Seelig J (1992): Peptide binding to lipid bilayers. nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry 31:10044–10053PubMedCrossRefGoogle Scholar
  10. Besler BH, Merz KMJ, Kollman PA (1990): Atomic charges derived from semiempirical methods.J Comput Chem 11:431–439CrossRefGoogle Scholar
  11. Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992): A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252PubMedCrossRefGoogle Scholar
  12. Brooks CL, Karplus M, Pettit BM (1988): Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. New York: John Wiley and SonsGoogle Scholar
  13. Brooks CLI, Brunger A, Karplus M (1985): Active site dynamics in protein molecules: A stochastic boundary molecular dynamics approach. Biopolymers 24:843PubMedCrossRefGoogle Scholar
  14. Brown JW, Huestis WH (1993): Structure and orientation of a bilayer-bound model tripeptide. A 1 H NMR study.J Phys Chem 97:2967–2973CrossRefGoogle Scholar
  15. Burger KNJ, Verkleij AJ (1990): Membrane fusion. Experientia 46:631–644PubMedCrossRefGoogle Scholar
  16. Chiu S-W, Jakobsson E, Subramaniam S, McCammon, JA (1991): Time correlation analysis of simulated water motion in flexible and rigid gramicidin channels. Biophys J 60:273PubMedCrossRefGoogle Scholar
  17. Chiu SW, Novotny JA, Jakobsson E (1993): The nature of ion and water barrier crossings in a simulated ion channel. Biophys J 64:98–108PubMedCrossRefGoogle Scholar
  18. Chiu SW, Subramaniam S, Jakobsson E, McCammon JA (1989): Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study. Biophys J 56:253–261PubMedCrossRefGoogle Scholar
  19. Damodaran K, Merz KM, Jr. (1995): Interaction of the fusion inhibiting peptide carbo- benzoxy-D-Phe-L-Phe-Gly with N-methyldioleoylphosphatidylethanolamine lipid bilayers. J Amer Chem Soc 117:6561–6571CrossRefGoogle Scholar
  20. Damodaran KV, Merz KM, Jr. (1994a): Computer simulation of lipid systems. In: Reviews in Computational Chemistry, Lipkowitz KB, Boyd DB, eds. New York: VCH PublishersGoogle Scholar
  21. Damodaran KV, Merz KM, Jr. (1994b): A comparison between DMPC and DLPE based lipid bilayers. Biophys J 66:1076–1087PubMedCrossRefGoogle Scholar
  22. Damodaran KV, Merz KM, Jr., Gaber BP (1995). Interaction of small peptides with lipid bilayers. Biophys J 69:1299–1308PubMedCrossRefGoogle Scholar
  23. Damodaran KV, Merz KM, Jr., Gaber BP (1992): Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. Biochemistry 31:7656–7664PubMedCrossRefGoogle Scholar
  24. Davis JH, Clare DM, Hodges RS, Bloom M (1983): Interaction of a synthetic amphiphilic polypeptide and lipids in a bilayer structure. Biochemistry 22:5298–5305CrossRefGoogle Scholar
  25. Deamer DW, Bramhall J (1986): Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids 40:167–188PubMedCrossRefGoogle Scholar
  26. Dickinson E (1985): Brownian dynamics with hydrodynamic interactions: The application to protein diffusional problems. Chem Soc Rev 14:421CrossRefGoogle Scholar
  27. Edholm O, Jahnig F (1988): The structure of a membrane-spanning polypeptide studied by molecular dynamics. Biophys Chem 30:279–292PubMedCrossRefGoogle Scholar
  28. Egberts E, Berendsen HJC (1988): Molecular dynamics simulation of a smectic liquid crystal with atomic detail. J Chem Phys 89:3718–3732CrossRefGoogle Scholar
  29. Ellens H, Bentz J, Szoka FC (1986): Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the La — Hn phase transition. Biochemistry 25:4141–4147PubMedCrossRefGoogle Scholar
  30. Ellens H, Seigel DP, Alford D, Yeagle PL, Boni L, Lis LJ, Bentz QPJ (1989): Membrane fusion and inverted phases. Biochemistry 28:3692–3703PubMedCrossRefGoogle Scholar
  31. Epand RM, Epand RF, Richardson CD, Yeagle PL (1993): Structural requirements for the inhibition of membrane fusion by carbobenzoxy-D-Phe-Phe-Gly. Biochim Biophys Acta 1152:128–134PubMedCrossRefGoogle Scholar
  32. Field MJ, Bash PA, Karplus MJ (1990): A combined quantum mechanical and molecular mechanical potential for molecular dynamic simulations.J Comput Chem 11:700–733CrossRefGoogle Scholar
  33. Gao J, Xia X (1992): A priori evaluation of aqueous polarization effects through Monte-Carlo QM-MM simulations. Science 258:631–635PubMedCrossRefGoogle Scholar
  34. Gennis RB (1989): Biomembranes: Molecular Structure and Function New York: Springer-VerlagGoogle Scholar
  35. Gruner SM, Tate MW, Kirk GL, So PTC, Turner DC, Keane DT, Tilcock CPS, Cullis PR (1988): X-ray diffraction study of the polymorphic behavior of N-methylated di-oleoylphosphatidylethanolamine. Biochemistry 27:2853–2866PubMedCrossRefGoogle Scholar
  36. Huang P, Perez JJ, Loew GH (1994): Molecular dynamics simulations of phospholipid bilayers.J Biomol Str Dyn 11:927–956Google Scholar
  37. Huschilt JC, Hodges RS, Davis JH (1985): Phase equilibria in an amphiphilic peptide-phospholipid model membrane by deuterium nuclear magnetic resonance difference spectroscopy. Biochemistry 24:1377–1386CrossRefGoogle Scholar
  38. Jacobs RE, White SH (1989): The nature of the hydrophobic binding of small peptides at the bilayer interface: Implications for the insertion of transbilayer helices. Biochemistry 28:3421–3437PubMedCrossRefGoogle Scholar
  39. Jacobs RE, White SH (1987): Lipid bilayer pertubations induced by simple hydrophobic peptides. Biochemistry 26:6127–6134PubMedCrossRefGoogle Scholar
  40. Jacobs RE, White SH (1986): Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: A simple model system for examining the protein-lipid interface. Biochemistry 25:2605PubMedCrossRefGoogle Scholar
  41. Jorgensen WL, Madura JD, Swenson CJ (1984): Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106:6638–6646CrossRefGoogle Scholar
  42. Kelsey DR, Flanagan TD, Young J, Yeagle PL (1991): Inhibition of sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides. Virology 182:690–702PubMedCrossRefGoogle Scholar
  43. Kelsey DR, Flanagan TD, Young J, Yeagle PL (1990): Peptide inhibitors of enveloped virus infection inhibit phospholipid fusion and sendai virus fusion with phospholipid vesicles.J Biol Chem 265:12178–12183PubMedGoogle Scholar
  44. Lewis BA, Engelman DM (1983): Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles.J Mol Biol 166:211–217PubMedCrossRefGoogle Scholar
  45. Lichtenberger LM, Wang ZM, Romero JJ, Ulloa C, Perez JC, Giraud MN, Barreto JC (1995): Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: Insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nature Med 1:154–158PubMedCrossRefGoogle Scholar
  46. Marrink SJ, Berkowitz M, Berendsen HJC (1993): Molecular dynamics simulation of a membrane/water interface: The ordering of water and its relation to the hydration force. Langmuir 9:3122–3131CrossRefGoogle Scholar
  47. McCammon JA, Harvey SC (1987): Dynamics of Proteins and Nucleic Acids. New York: Cambridge University PressGoogle Scholar
  48. Merz KM, Jr (1992): Analysis of a large database of electrostatic potential derived atomic point charges. J Comput Chem 13:749–767CrossRefGoogle Scholar
  49. Mezei M, Beveridge DL (1986): Free energy simulations. Ann NY Acad Sci 482:1–23PubMedCrossRefGoogle Scholar
  50. Milik M, Skolnick J (1993): Insertion of peptide chains into lipid membranes: An off-lattice Monte Carlo dynamics model. Proteins: Struc Func Genet 15:10–25CrossRefGoogle Scholar
  51. Milik M, Skolnick J (1992): Spontaneous insertion of polypeptide chains into membranes: A Monte Carlo study. Proc Natl Acad Sci USA 89:9391–9395PubMedCrossRefGoogle Scholar
  52. Muga A, Neugebauer W, Hirama T, Surewicz WK (1994): Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry 33:4444–4448PubMedCrossRefGoogle Scholar
  53. Murata M, Nagayama K, Ohnishi S (1987): Membrane fusion activity of succinylated melittin is triggered by protonation of its carboxyl groups. Biochemistry 26:4056–4062PubMedCrossRefGoogle Scholar
  54. Richardson CD, Choppin PW (1983): Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: Studies on the site of action. Virology 131:518–532PubMedCrossRefGoogle Scholar
  55. Richardson CD, Scheid A, Choppin PW (1980): Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or AH2 viral polupeptides. Virology 105:205PubMedCrossRefGoogle Scholar
  56. Roux B, Karplus M (1994): Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct 23:731–761PubMedCrossRefGoogle Scholar
  57. Roux B, Karplus M (1993): Ion transport in the gramicidin channel: Free energy of the solvated right-handed dimer in a model membrane.J Am Chem Soc 115:3250–3262CrossRefGoogle Scholar
  58. Scott HL (1991): Lipid-cholesterol interactions (Monte Carlo simulations and theory). Biophys J 59:445–455PubMedCrossRefGoogle Scholar
  59. Seelig A, Seelig J (1974): The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845PubMedCrossRefGoogle Scholar
  60. Seelig J, Browning JL (1978): General features of phospholipid conformation in membranes. FEBS Lett 92:41CrossRefGoogle Scholar
  61. Seelig J, Ganz P (1991): Nonclassical hydrophobic effect in membrane binding equilibria. Biochemistry 30:9354–9359PubMedCrossRefGoogle Scholar
  62. Stanton RV, Little LR, Merz KM Jr (1995): Quantum free energy perturbation study within a PM3/MM coupled potential.J Phys Chem 99:483–486CrossRefGoogle Scholar
  63. Stegmann T (1993)a: Influenza hemagglutinin-mediated membrane fusion does not involve inverted phase lipid intermediates.J Biol Chem 268:1716–1722PubMedGoogle Scholar
  64. Stegmann T (1993)b: Membrane fusion-inhibiting peptides do not inhibit influenza virus fusion or the Ca+-induced fusion of negatively charged vesicles.J Biol Chem 268: 26886–26892PubMedGoogle Scholar
  65. Stouch TR (1993): Lipid membrane structure and dynamics studied by all-atom molecular dynamics simulations of hydrated phospholipid bilayers. Mol Simulation 102–106:335–362CrossRefGoogle Scholar
  66. Venable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: An investigation of membrane fluidity. Science 262:223–226PubMedCrossRefGoogle Scholar
  67. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984): A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784CrossRefGoogle Scholar
  68. White JM (1992): Membrane fusion. Science 258:917–924PubMedCrossRefGoogle Scholar
  69. Wimley WC, White SH (1993): Membrane paritioning: Distinguishing bilayer effects from the hydrophobic effect. Biochemistry 32:6307–6312PubMedCrossRefGoogle Scholar
  70. Wipff G, ed. (1994): Computational Approaches in Supramolecular Chemistry, NATO ASI Series. Dordrecht: Kluwer Academic PublishersGoogle Scholar
  71. Woolf TB, Desharnais J, Roux B (1994): Structure and dynamics of the sidechains of gramicidin in a DMPC bilayer. In: Computational Approaches to Supramolecular Chemistry, Wipff G, ed. Dordrecht: Kluwer Academic PublishersGoogle Scholar
  72. Woolf TB, Roux B (1994): Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci USA 91:11631–11635PubMedCrossRefGoogle Scholar
  73. Xing J, Scott HL (1989): Monte Carlo studies of lipid chains and gramicidin A in a model membrane. Biochem Biophys Res Comm 165:1–6PubMedCrossRefGoogle Scholar
  74. Yeagle PL, Young J, Hui SW, Epand RM (1992): On the mechanism of inhibition of viral and vesicle membrane fusion by carbobenzoxy-D-phenylalanyl-L-phenylalanylglycine. Biochemistry 31:3177–3183PubMedCrossRefGoogle Scholar
  75. Zhang G, Schlick T (1994): The Langevin/implicit-Euler/normal-mode scheme for molecular dynamics at large time steps.J Chem Phys 101:4995CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • K. V. Damodaran
  • Kenneth M. MerzJr.

There are no affiliations available

Personalised recommendations