Skip to main content

Bilayer-Peptide Interactions

  • Chapter
Biological Membranes

Abstract

Biomembranes have a variety of important functions in living systems. Besides forming an envelope to the cell, they also have a regulatory function, serving as a barrier to the transport of matter between the cell and the outside world (Gennis, 1989). These latter processes involve interaction of the membrane lipids with membrane proteins and a variety of small molecules such as water, hormones, etc. Moreover, a detailed understanding of the interactions between lipid bilayers and small molecules and peptides can give useful insights into a variety of membrane phenomena such as passive and active permeation across cell membranes (Deamer and Bramhall, 1986), function of drugs and anesthetics (Lichtenberger et al, 1995), and membrane fusion and fusion inhibition (Bentz, 1993; Burger and Verkleij, 1990; White, 1992). Furthermore, bilayer models involving peptides can also be used as prototypes for understanding membrane protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen MP, Tildesley DJ (1987): Computer Simulation of Liquids. Oxford: Clarendon Press

    Google Scholar 

  • Alper HE, Stouch TR (1995): Orientation and diffusion of a drug analogue in biomembranes: Molecular dynamics simulations.J Phys Chem 99:5724–5731

    Article  CAS  Google Scholar 

  • Bassolino-Klimas D, Alper HE, Stouch TR (1995): Mechanism of solute diffusion through lipid bilayer membranes by molecular dynamics simulation. J Am Chem Soc: in press

    Google Scholar 

  • Bassolino-Klimas D, Alper HE, Stouch TR (1993): Solute diffusion in lipid bilayer membranes: An atomic level study by molecular dynamics simulation. Biochemistry 32:12624–12637

    Article  PubMed  CAS  Google Scholar 

  • Bauerle HD, Seelig J (1991): Interaction of charged and uncharged calcium channel antagonists with phospholipid membranes. Binding equilibrium, binding enthalpy and membrane location. Biochemistry 30:7203–7211

    Article  PubMed  CAS  Google Scholar 

  • Bentz J, ed. (1993): Viral fusion mechanisms. Boca Raton: CRC Press

    Google Scholar 

  • Bentz J, Alford D, Ellens H (1992): Liposomes, membrane fusion and cytoplasmic delivery. In: The Structure of Biological Membranes, Yeagle PL, ed. Boca Raton: CRC Press

    Google Scholar 

  • Berendsen HJC, Grigera, JR, Straatsma TP (1987): The missing term in effective pair potentials.J Phys Chem 91:6289–6271

    Article  Google Scholar 

  • Beschiaschvili G, Seelig J (1992): Peptide binding to lipid bilayers. nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry 31:10044–10053

    Article  PubMed  CAS  Google Scholar 

  • Besler BH, Merz KMJ, Kollman PA (1990): Atomic charges derived from semiempirical methods.J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  • Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992): A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252

    Article  PubMed  CAS  Google Scholar 

  • Brooks CL, Karplus M, Pettit BM (1988): Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. New York: John Wiley and Sons

    Google Scholar 

  • Brooks CLI, Brunger A, Karplus M (1985): Active site dynamics in protein molecules: A stochastic boundary molecular dynamics approach. Biopolymers 24:843

    Article  PubMed  CAS  Google Scholar 

  • Brown JW, Huestis WH (1993): Structure and orientation of a bilayer-bound model tripeptide. A 1 H NMR study.J Phys Chem 97:2967–2973

    Article  CAS  Google Scholar 

  • Burger KNJ, Verkleij AJ (1990): Membrane fusion. Experientia 46:631–644

    Article  PubMed  CAS  Google Scholar 

  • Chiu S-W, Jakobsson E, Subramaniam S, McCammon, JA (1991): Time correlation analysis of simulated water motion in flexible and rigid gramicidin channels. Biophys J 60:273

    Article  PubMed  CAS  Google Scholar 

  • Chiu SW, Novotny JA, Jakobsson E (1993): The nature of ion and water barrier crossings in a simulated ion channel. Biophys J 64:98–108

    Article  PubMed  CAS  Google Scholar 

  • Chiu SW, Subramaniam S, Jakobsson E, McCammon JA (1989): Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study. Biophys J 56:253–261

    Article  PubMed  CAS  Google Scholar 

  • Damodaran K, Merz KM, Jr. (1995): Interaction of the fusion inhibiting peptide carbo- benzoxy-D-Phe-L-Phe-Gly with N-methyldioleoylphosphatidylethanolamine lipid bilayers. J Amer Chem Soc 117:6561–6571

    Article  CAS  Google Scholar 

  • Damodaran KV, Merz KM, Jr. (1994a): Computer simulation of lipid systems. In: Reviews in Computational Chemistry, Lipkowitz KB, Boyd DB, eds. New York: VCH Publishers

    Google Scholar 

  • Damodaran KV, Merz KM, Jr. (1994b): A comparison between DMPC and DLPE based lipid bilayers. Biophys J 66:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • Damodaran KV, Merz KM, Jr., Gaber BP (1995). Interaction of small peptides with lipid bilayers. Biophys J 69:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Damodaran KV, Merz KM, Jr., Gaber BP (1992): Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. Biochemistry 31:7656–7664

    Article  PubMed  CAS  Google Scholar 

  • Davis JH, Clare DM, Hodges RS, Bloom M (1983): Interaction of a synthetic amphiphilic polypeptide and lipids in a bilayer structure. Biochemistry 22:5298–5305

    Article  CAS  Google Scholar 

  • Deamer DW, Bramhall J (1986): Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids 40:167–188

    Article  PubMed  CAS  Google Scholar 

  • Dickinson E (1985): Brownian dynamics with hydrodynamic interactions: The application to protein diffusional problems. Chem Soc Rev 14:421

    Article  CAS  Google Scholar 

  • Edholm O, Jahnig F (1988): The structure of a membrane-spanning polypeptide studied by molecular dynamics. Biophys Chem 30:279–292

    Article  PubMed  CAS  Google Scholar 

  • Egberts E, Berendsen HJC (1988): Molecular dynamics simulation of a smectic liquid crystal with atomic detail. J Chem Phys 89:3718–3732

    Article  CAS  Google Scholar 

  • Ellens H, Bentz J, Szoka FC (1986): Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the La — Hn phase transition. Biochemistry 25:4141–4147

    Article  PubMed  CAS  Google Scholar 

  • Ellens H, Seigel DP, Alford D, Yeagle PL, Boni L, Lis LJ, Bentz QPJ (1989): Membrane fusion and inverted phases. Biochemistry 28:3692–3703

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF, Richardson CD, Yeagle PL (1993): Structural requirements for the inhibition of membrane fusion by carbobenzoxy-D-Phe-Phe-Gly. Biochim Biophys Acta 1152:128–134

    Article  PubMed  CAS  Google Scholar 

  • Field MJ, Bash PA, Karplus MJ (1990): A combined quantum mechanical and molecular mechanical potential for molecular dynamic simulations.J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  • Gao J, Xia X (1992): A priori evaluation of aqueous polarization effects through Monte-Carlo QM-MM simulations. Science 258:631–635

    Article  PubMed  CAS  Google Scholar 

  • Gennis RB (1989): Biomembranes: Molecular Structure and Function New York: Springer-Verlag

    Google Scholar 

  • Gruner SM, Tate MW, Kirk GL, So PTC, Turner DC, Keane DT, Tilcock CPS, Cullis PR (1988): X-ray diffraction study of the polymorphic behavior of N-methylated di-oleoylphosphatidylethanolamine. Biochemistry 27:2853–2866

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Perez JJ, Loew GH (1994): Molecular dynamics simulations of phospholipid bilayers.J Biomol Str Dyn 11:927–956

    CAS  Google Scholar 

  • Huschilt JC, Hodges RS, Davis JH (1985): Phase equilibria in an amphiphilic peptide-phospholipid model membrane by deuterium nuclear magnetic resonance difference spectroscopy. Biochemistry 24:1377–1386

    Article  CAS  Google Scholar 

  • Jacobs RE, White SH (1989): The nature of the hydrophobic binding of small peptides at the bilayer interface: Implications for the insertion of transbilayer helices. Biochemistry 28:3421–3437

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RE, White SH (1987): Lipid bilayer pertubations induced by simple hydrophobic peptides. Biochemistry 26:6127–6134

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RE, White SH (1986): Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: A simple model system for examining the protein-lipid interface. Biochemistry 25:2605

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL, Madura JD, Swenson CJ (1984): Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106:6638–6646

    Article  CAS  Google Scholar 

  • Kelsey DR, Flanagan TD, Young J, Yeagle PL (1991): Inhibition of sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides. Virology 182:690–702

    Article  PubMed  CAS  Google Scholar 

  • Kelsey DR, Flanagan TD, Young J, Yeagle PL (1990): Peptide inhibitors of enveloped virus infection inhibit phospholipid fusion and sendai virus fusion with phospholipid vesicles.J Biol Chem 265:12178–12183

    PubMed  CAS  Google Scholar 

  • Lewis BA, Engelman DM (1983): Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles.J Mol Biol 166:211–217

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberger LM, Wang ZM, Romero JJ, Ulloa C, Perez JC, Giraud MN, Barreto JC (1995): Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: Insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nature Med 1:154–158

    Article  PubMed  CAS  Google Scholar 

  • Marrink SJ, Berkowitz M, Berendsen HJC (1993): Molecular dynamics simulation of a membrane/water interface: The ordering of water and its relation to the hydration force. Langmuir 9:3122–3131

    Article  CAS  Google Scholar 

  • McCammon JA, Harvey SC (1987): Dynamics of Proteins and Nucleic Acids. New York: Cambridge University Press

    Google Scholar 

  • Merz KM, Jr (1992): Analysis of a large database of electrostatic potential derived atomic point charges. J Comput Chem 13:749–767

    Article  CAS  Google Scholar 

  • Mezei M, Beveridge DL (1986): Free energy simulations. Ann NY Acad Sci 482:1–23

    Article  PubMed  CAS  Google Scholar 

  • Milik M, Skolnick J (1993): Insertion of peptide chains into lipid membranes: An off-lattice Monte Carlo dynamics model. Proteins: Struc Func Genet 15:10–25

    Article  CAS  Google Scholar 

  • Milik M, Skolnick J (1992): Spontaneous insertion of polypeptide chains into membranes: A Monte Carlo study. Proc Natl Acad Sci USA 89:9391–9395

    Article  PubMed  CAS  Google Scholar 

  • Muga A, Neugebauer W, Hirama T, Surewicz WK (1994): Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry 33:4444–4448

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Nagayama K, Ohnishi S (1987): Membrane fusion activity of succinylated melittin is triggered by protonation of its carboxyl groups. Biochemistry 26:4056–4062

    Article  PubMed  CAS  Google Scholar 

  • Richardson CD, Choppin PW (1983): Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: Studies on the site of action. Virology 131:518–532

    Article  PubMed  CAS  Google Scholar 

  • Richardson CD, Scheid A, Choppin PW (1980): Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or AH2 viral polupeptides. Virology 105:205

    Article  PubMed  CAS  Google Scholar 

  • Roux B, Karplus M (1994): Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct 23:731–761

    Article  PubMed  CAS  Google Scholar 

  • Roux B, Karplus M (1993): Ion transport in the gramicidin channel: Free energy of the solvated right-handed dimer in a model membrane.J Am Chem Soc 115:3250–3262

    Article  CAS  Google Scholar 

  • Scott HL (1991): Lipid-cholesterol interactions (Monte Carlo simulations and theory). Biophys J 59:445–455

    Article  PubMed  CAS  Google Scholar 

  • Seelig A, Seelig J (1974): The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845

    Article  PubMed  CAS  Google Scholar 

  • Seelig J, Browning JL (1978): General features of phospholipid conformation in membranes. FEBS Lett 92:41

    Article  CAS  Google Scholar 

  • Seelig J, Ganz P (1991): Nonclassical hydrophobic effect in membrane binding equilibria. Biochemistry 30:9354–9359

    Article  PubMed  CAS  Google Scholar 

  • Stanton RV, Little LR, Merz KM Jr (1995): Quantum free energy perturbation study within a PM3/MM coupled potential.J Phys Chem 99:483–486

    Article  CAS  Google Scholar 

  • Stegmann T (1993)a: Influenza hemagglutinin-mediated membrane fusion does not involve inverted phase lipid intermediates.J Biol Chem 268:1716–1722

    PubMed  CAS  Google Scholar 

  • Stegmann T (1993)b: Membrane fusion-inhibiting peptides do not inhibit influenza virus fusion or the Ca+-induced fusion of negatively charged vesicles.J Biol Chem 268: 26886–26892

    PubMed  CAS  Google Scholar 

  • Stouch TR (1993): Lipid membrane structure and dynamics studied by all-atom molecular dynamics simulations of hydrated phospholipid bilayers. Mol Simulation 102–106:335–362

    Article  Google Scholar 

  • Venable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: An investigation of membrane fluidity. Science 262:223–226

    Article  PubMed  CAS  Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984): A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  • White JM (1992): Membrane fusion. Science 258:917–924

    Article  PubMed  CAS  Google Scholar 

  • Wimley WC, White SH (1993): Membrane paritioning: Distinguishing bilayer effects from the hydrophobic effect. Biochemistry 32:6307–6312

    Article  PubMed  CAS  Google Scholar 

  • Wipff G, ed. (1994): Computational Approaches in Supramolecular Chemistry, NATO ASI Series. Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Woolf TB, Desharnais J, Roux B (1994): Structure and dynamics of the sidechains of gramicidin in a DMPC bilayer. In: Computational Approaches to Supramolecular Chemistry, Wipff G, ed. Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Woolf TB, Roux B (1994): Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci USA 91:11631–11635

    Article  PubMed  CAS  Google Scholar 

  • Xing J, Scott HL (1989): Monte Carlo studies of lipid chains and gramicidin A in a model membrane. Biochem Biophys Res Comm 165:1–6

    Article  PubMed  CAS  Google Scholar 

  • Yeagle PL, Young J, Hui SW, Epand RM (1992): On the mechanism of inhibition of viral and vesicle membrane fusion by carbobenzoxy-D-phenylalanyl-L-phenylalanylglycine. Biochemistry 31:3177–3183

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Schlick T (1994): The Langevin/implicit-Euler/normal-mode scheme for molecular dynamics at large time steps.J Chem Phys 101:4995

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Damodaran, K.V., Merz, K.M. (1996). Bilayer-Peptide Interactions. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics