Determination of the Neutron Flux and Energy Spectrum and Calculation of Primary Recoil and Damage-Energy Distributions for Materials Irradiated in the Low Temperature Fast-Neutron Facility in CP-5

  • M. A. Kirk
  • L. R. Greenwood


We have determined the absolute differential neutron-energy spectrum for the low temperature fast-neutron irradiation facility in the CP-5 reactor by means of a 20-foil activation technique. This technique employs the most recent version of the SAND-II computer code, which iteratively unfolds the neutron spectrum by fitting the foil activities. A Monte Carlo routine was also employed to calculate standard-deviation errors in each neutron-energy group. Using this differential neutron spectrum we have calculated for numerous elements, total recoil cross sections, detailed primary recoil group distributions, total damage-energy cross sections, damage-energy distributions, and an error analysis based on the uncertainties in the neutron spectrum. The significance of this information with respect to the interpretations of various neutron radiation damage experiments is discussed. A general observation about neutron radiation damage in silicon is also suggested.


Neutron Flux Boron Carbide Neutron Spectrum Recoil Energy Neutron Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    A. C. Klank, T. H. Blewitt, J. J. Minarik and T. L. Scott, Bull. Inst. Int. Froid., Suppl. 5, 373 (1966).Google Scholar
  2. 2).
    W. N. McElroy, S. Berg, T. B. Crockett and R. J. Tuttle, Nucl. Sci. Eng. 36, 15 (1969).Google Scholar
  3. 3).
    A. D. Rossin, published by T. H. Blewitt and T. J. Koppenaal, in Radiation Effects, edited by W. F. Sheely (Gordon and Breach, New York, 1966) p. 561.Google Scholar
  4. 4).
    G. R. Odette and D. R. Doiron, Nucl. Tech. 29, 346 (1976).Google Scholar
  5. 5).
    D. M. Parkin and A. N. Goland, Rad. Effects 28, 31 (1976).CrossRefGoogle Scholar
  6. 6).
    T. A. Gabriel, J. D. Amburgey and N. M. Green, ORNL/TM-5160.Google Scholar
  7. 7).
    R. R. Coltman, Jr., C. E. Klabunde, D. L. McDonald and J. K. Redman, J. Appi. Physics 33, 3509 (1962)CrossRefGoogle Scholar
  8. R. R. Coltman, C. E. Klabunde and J. K. Redman, Phys. Rev. 156, 715 (1967).CrossRefGoogle Scholar
  9. 8).
    M. T. Robinson, in Nuclear Fusion Reactors, ed. by J. L. Hall and J. H. C. Maple (British Nuclear Energy Society, London, 1970), p. 364.Google Scholar
  10. 9).
    J. Lindhard, V. Nielsen, M. Scharff and P. V. Thomsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33, No. 10 (1963).Google Scholar
  11. 10).
    J. A. Horak published in Ref. 3, later published as J. A. Horak and T. H. Blewitt, Phys. Stat. Sol. 9, 721 (1972).Google Scholar
  12. 11).
    B. S. Brown, T. H. Blewitt, T. L. Scott, and A. C. Klank, J. Nucl. Mat. 52, 215 (1974).CrossRefGoogle Scholar
  13. 12).
    M. A. Kirk, R. A. Conner, D. G. Wozniak, L. R. Greenwood, R. L. Malewicki and R. R. Heinrich, submitted to Physical Review for possible publication.Google Scholar
  14. 13).
    B. S. Brown and T. H. Blewitt, submitted to J. Nucl. Mat. for possible publication.Google Scholar
  15. 14).
    M. A. Kirk, T. H. Blewitt and T. L. Scott, J. Nucl. Mat. 69/70, 780 (1978).CrossRefGoogle Scholar
  16. 15).
    T. H. Blewitt, A. C. Klank, T. L. Scott and W. Weber, in Radiation Induced Voids in Metals, ed. by J. W. Corbett and L. C. Ianniello (USAEC, 1972).Google Scholar
  17. 16).
    F. W. Walker, G. J. Kirouac and F. M. Rourke, Chart of the Nuclides, Knolls Atomic Power Laboratory, 12th edition (1977).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • M. A. Kirk
    • 1
  • L. R. Greenwood
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations