Advertisement

Theoretical Studies of Electrons in Fluids

  • Neil R. Kestner
Part of the NATO ASI Series book series (NSSB, volume 193)

Abstract

While we could probably trace the appearance of excess electrons in fluids to prehistoric thunderstorms, a more likely starting point for our discussion is man’s discovery of metal ammonia solutions. It had been widely believed that the German chemist Weyl (1864) was the first to study this interesting system in 1863 since he published the first accounts of his studies in the Annals of Physics in 1864. However, Peter Edwards (1982) discovered in a laboratory notebook dated November 1808, almost fifty years earlier, that Sir Humphry Davy had made very detailed studies of potassium exposed to ammonia gas (dry gas as he noted most precisely) leading to potassium-ammonia solutions. These studies were apparently never published, although he clearly described the unique features of the blue and bronze solutions.

Keywords

Water Cluster Excess Electron Path Integral Method Range Polarization Polar Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P.W., 1958, Phys. Rev, 109:1492.ADSCrossRefGoogle Scholar
  2. Ascarelli, G., 1985, Comm. Sol. Stat. Phys, 11:179.Google Scholar
  3. Austin, B.J., Heine, V., and Sham, L.J., 1962, Phys. Rev, 127:276.ADSMATHCrossRefGoogle Scholar
  4. Basak, S., and Cohen, M.N., 1979, Phys. Rev. B, 20:3404.ADSCrossRefGoogle Scholar
  5. Bartholemew, J., Hall, R., and Berne, B.J., 1985, Phys. Rev, B32:4234.Google Scholar
  6. Berne, B.J., and Thirumalai, D., 1986, On the simulation of quantum systems: path integral methods, Ann. Rev. Phys. Chem, 37:401.ADSCrossRefGoogle Scholar
  7. Boag, J.R., and Hart, E.J., 1963, Nature, 197:45.ADSCrossRefGoogle Scholar
  8. Carmichael, I., 1981, Abstract PH161 at 28th Congress of the IUPAC, Vancouver, B.C.Google Scholar
  9. Chandler, D., and Wolynes, P.G., 1981, J. Chem. Phys, 74:4078;ADSCrossRefGoogle Scholar
  10. Chandler, D., 1982, in: “Studies in Statistical Mechanics VIII,” E.W. Montrall and J.L. Lebowitz, eds., North Holland, Amsterdam, p. 275.Google Scholar
  11. Chandler, D., Singh, Y., and Richardson, D.M., 1984, J. Chem. Phys, 81:1975;ADSCrossRefGoogle Scholar
  12. Nichols, A.L., III, Chandler, D., Singh, Y., and Richardson, D.M., 1984, J. Chem. Phys, 81:5109.ADSCrossRefGoogle Scholar
  13. Coe, J.V., Worsnop, D.R., and Bowen, K.H., 1986, J. Chem. Phys, (submitted).Google Scholar
  14. Cohen, M.H., and Heine, V., 1961, Phys. Rev, 12:1821, 122:1821.Google Scholar
  15. Cohen, M.H., 1964, unpublished notes, University of Chicago.Google Scholar
  16. Cohen, M.H., Fritzsche, H., and Ovshinsky, S.R., 1969, Phys. Rev. Let, 22:1065.ADSCrossRefGoogle Scholar
  17. Cohen, M.H., 1970, in: “Proceedings of the Tenth International Conference on the Physics of Semiconductors”, Cambridge, Mass., S.K. Keller, S.C. Hensel, and R. Stern, eds., (USAEC, Division of Technical Information, Springfield, VA) p.645.Google Scholar
  18. Cohen, M.H., 1970, J. Non Crystalline Solids, 4:391.ADSCrossRefGoogle Scholar
  19. Cohen, M.H., and Sak, J., 1972, in Amorphous and Liquid Semiconductors; M.H. Cohen and G. Lucousky, eds. (North Holland Publ Co., Amsterdam), p.696.Google Scholar
  20. Cohen, M.H., 1973, The electronic structures of disordered materials in: “Electrons in Fluids,” J. Jortner and N.R. Kestner, eds., Springer- Verlag, Berlin.Google Scholar
  21. Coker, D.F., Berne, B.J., and Thirumalai, D., 1987, J. Chem. Phys, 86:5689.ADSCrossRefGoogle Scholar
  22. Copeland, D.A., Kestner, N.R., and Jortner, J., 1970, J. Chem. Phys, 53:1189.ADSCrossRefGoogle Scholar
  23. Economou, E.N., and Cohen, M.H., 1972, Phys. Rev, 5:2931.ADSCrossRefGoogle Scholar
  24. Edwards, P.P., 1982, Advances in Inorg. and Radiochem, 25:135.CrossRefGoogle Scholar
  25. Eggarter, T.P., and Cohen, M.H., 1970, Phys. Rev. Let, 25:807; 1971, 27:129.ADSCrossRefGoogle Scholar
  26. Eggarter, T.P., 1972, Phys. Rev, 5A:2496; ibid, A5.-2496.ADSGoogle Scholar
  27. Feng, D.F., and Kevan, L., and Yoshida, H., 1974, J. Chem. Phys, 61:4440.ADSCrossRefGoogle Scholar
  28. Feng, D.F., and Kevan, L., 1980, Chem. Rev, 80:1.CrossRefGoogle Scholar
  29. Feynman, R.P., and Hibbs, A.R., 1965, “Quantum Mechanics and Path Integrals”, McGraw Hill, New York.MATHGoogle Scholar
  30. Freeman, G.R., 1987, Ionization and charge separation in irradiated materials, in: “Kinetics of Inhomogeneous Processes”, G.R. Freeman, ed., J.W. Wiley and Sons, New York.Google Scholar
  31. Fueki, K., Feng, D.F., Kevan, L., and Christoffersen, R., 1971a, J. Chem. Phys, 75:2291.Google Scholar
  32. Fueki, K., Feng, D.F., and Kevan, L., 1971b, Chem. Phys. Let, 10:504;ADSCrossRefGoogle Scholar
  33. Fueki, K., Feng, D.F., and Kevan, L., 1972a, J. Chem. Phys., 56:5351; 1972b, 57:1253.ADSCrossRefGoogle Scholar
  34. Fueki, K., Feng, D.F., and Kevan, L., 1973, J. Amer. Chem. Soc, 95:1398.CrossRefGoogle Scholar
  35. Gaathon, A., and Jortner, J., 1973, in: “Electrons in Fluids”, J. Jortner and N.R. Kestner, eds., Springer-Verlag, Berlin, pp.429–446.CrossRefGoogle Scholar
  36. Haberland, N., Schindler, H.G., and Worsnop, D.R., 1984, Ber. Bunsenges. Chem, 8:270;Google Scholar
  37. Haberland, N., Schindler, H.G., and Worsnop, D.R. 1984, J. Chem. Phys, 88:3903;CrossRefGoogle Scholar
  38. Haberland, N., Schindler, H.G., and Worsnop, D.R. 1984, J. Chem. Phys, 81:3742.Google Scholar
  39. Harrison, H.R., and Springett, B.E., 1971, Phys. Let, 35A:73.ADSGoogle Scholar
  40. Harrison, H.R., and Springett, B.E., 1973, Chem. Phys. Let, 10:418; ibid, 1973, 19:231.ADSCrossRefGoogle Scholar
  41. Hart, E.J., and Boag, J.W., 1962, J. Amer. Chem. Soc, 84:4090.CrossRefGoogle Scholar
  42. Hellmann, H., 1935, J. Chem. Phys, 3:61;ADSCrossRefGoogle Scholar
  43. Hellmann, H., 1935, Acta Fizicochem. USSR, 1:913; 1962, 4:225; and with W. Kassatotschkin, 1936, 5:23.Google Scholar
  44. Hernandez, J.P., 1972, Phys. Rev, 5A:635; 1972, 5A:2696.ADSGoogle Scholar
  45. Hiroike, K, Kestner, N.R., Rice, S.A., and Jortner J., 1965, J. Chem. Phys, 43:2625.ADSCrossRefGoogle Scholar
  46. Holroyd, R.A., The electron: its properties and reactions in: “Radiation Chemistry: Principles and Applications,” M. Rodgers and Farahatziz, eds, VCH Publishers, New York, pp. 237–262.Google Scholar
  47. Huang, S.S.S., and Freeman, G.R., 1978, J. Chem. Phys, 68:1355.ADSCrossRefGoogle Scholar
  48. Ichikawa, T., and Yoshida, H., 1980, J. Chem. Phys, 73:1540.ADSCrossRefGoogle Scholar
  49. Jahnke, J.A., Meyer, L., and Rice, S.A., 1971, Phys. Rev, A3:734.ADSGoogle Scholar
  50. Jonah, C.D., Romero, C., and Rahman, A., 1986, Chem. Phys. Let, 123:209.ADSCrossRefGoogle Scholar
  51. Jortner, J., 1962, Mol. Phys, 5:257.ADSCrossRefGoogle Scholar
  52. Jortner, J., Rice, S.A., and Wilson, E.G., 1964, in: “Solutions Metal-Ammoniac:Propriétés Physicochimiques, Colloque Weyl,” G. Lepoutre, M.H. Sienko, eds., W.A. Benjamin, pp.222–276.Google Scholar
  53. Jortner, J., Kestner, N.R., Rice, S.A., and Cohen, M.H., 1965, J. Chem. Phys 43:2614;ADSCrossRefGoogle Scholar
  54. Jortner, J., Kestner, N.R., Rice, S.A., and Cohen, M.H. “Modem Quantum Chemistry-Istanbul Lectures,” O. Sinanoglou, ed., (Academic press, New York, 1966) p. 129.Google Scholar
  55. Jortner, J., and Kestner, N.R., 1970, in: “Metal Ammonia Solutions — Colloque Weyl II”, J. Lagowski, M. Sienko, eds., Butterworths: London.Google Scholar
  56. Kenny-Wallace, G., and Jonah, J., 1981, Advanc. Chem. Phys, 47:535.CrossRefGoogle Scholar
  57. Kestner, N.R., Jortner, J., Rice, S.A., and Cohen, M.H., 1965, Phys. Rev, 140:A56.ADSCrossRefGoogle Scholar
  58. Kestner, N.R., 1973, Theory of electrons in polar liquids in: “Electrons in Fluids,” J. Jortner and N.R. Kestner, eds, Springer Verlag, Berlin, pp. 1–25.CrossRefGoogle Scholar
  59. Kestner, N.R., and Jortner, J., 1973, J. Chem. Phys, 77:1040.Google Scholar
  60. Kestner, N.R., 1976, Theoretical Studies of Electron-Solvent Interactions:Solved and Unsolved Problems, in: “Electron-Solvent and Anion-Solvent Interactions”, L. Kevan, and B.C. Webster, eds. Elsevier, Amsterdam, pp. 1–43.Google Scholar
  61. Kestner, N.R., 1987, “Solvated Electrons in Radiation Chemistry: Principles and Applications, M. Rodgers and Farahatziz, eds, VCH Publishers, New York, pp. 237–262.Google Scholar
  62. Kimura, T., Fueki, K., Narayana, P.A., and Kevan, L., 1970, Can. J. Chem, p. 55.Google Scholar
  63. Knapp, M., Echt, O., Kreiste, E., and Recknagel, E., 1986, J. Chem. Phys, 85:636;ADSCrossRefGoogle Scholar
  64. Knapp, M., Echt, O., Kreiste, E., and Recknagel, E., 1986, J. Chem. Phys, (preprint).Google Scholar
  65. Kraus, C.A., 1908, J. Am. Chem. Soc, 30:1323; 1914, 36:864; 1921, 43:749;CrossRefGoogle Scholar
  66. Kraus, C.A. 1931, J. Franklin Inst, 212:537.CrossRefGoogle Scholar
  67. Krebs, P., Bukowski, K., Giraud, V., and Heintze, M., 1982, Ber. Bunsenges. Phys. Chem, 86:879. For low density water studies, see alsoGoogle Scholar
  68. Christophorou, L.G., Carter, J.G., and Maxey, D.V., 1982, J. Chem. Phys, 76:2653.ADSCrossRefGoogle Scholar
  69. Krebs, P., and Heintze, M., 1982, J. Chem. Phys, 76:5484.ADSCrossRefGoogle Scholar
  70. Landman, U., Barnett, R.N., Cleveland, C.L., Sharf, O., and Jortner, J., 1987, J. Chem. Phys, 88:4421;Google Scholar
  71. Landman, U., Barnett, R.N., Cleveland, C.L., Sharf, O., and Jortner, J. 1987, Int. J. Quant. Chem. Symposium Volume, 88:4429;Google Scholar
  72. Landman, U., Barnett, R.N., Cleveland, C.L., Sharf, O., and Jortner, J. Phys. Rev. Let, 59:811Google Scholar
  73. Laria, D., and Chandler, D., 1987, Comparative Study of Theory and Simulation Calculations for Excess Electrons in Simple Fluids, preprint.Google Scholar
  74. Lekner, J., 1969, Phys. Rev, 158:130.ADSCrossRefGoogle Scholar
  75. Lepoutre, G., and Sienko, M.E., eds., “Solutions Metal-Ammoniac; Propriétés Physicochimiques:Colloque Weyl I, June 1963”. (W.A. Benjamin, Inc., New York, 1964).Google Scholar
  76. Levine, J., and Sanders, T.M., 1962, Phys. Rev. Let, 8:159.ADSCrossRefGoogle Scholar
  77. Marchi, M., Sprik, M., and Klein, M.L., 1988, J. Chem. Phys, 92:3625.CrossRefGoogle Scholar
  78. Mott, N.F., 1967, Advances in Phys, 16:49.ADSCrossRefGoogle Scholar
  79. Mott, N.F., 1949, Proc. Phys. Soc, A62:416:ADSGoogle Scholar
  80. Mott, N.F., Can. J. Phys, 34:1356;Google Scholar
  81. Mott, N.F., 1961, Phil. Mag, 6:287.ADSCrossRefGoogle Scholar
  82. Munuo, R., and Holroyd, R.A., 1988, these proceedings.Google Scholar
  83. Newton, M., 1975, J. Phys. Chem, 79:2795.CrossRefGoogle Scholar
  84. Nichols, A.L., III, and Chandler, D., 1984, J. Chem. Phys, 84:398.ADSCrossRefGoogle Scholar
  85. Nichols, A.L., III, Chandler, D., Singh, Y., and Richardson, P.M., 1984, J. Chem. Phys, 81:5109.ADSCrossRefGoogle Scholar
  86. Nishida, M., 1970, J. Chem. Phys, 67:2760; 1970, 67:2760; 1977, 67:4786.Google Scholar
  87. Ogg, R.A., 1946, J. Amer. Chem. Soc, 68:155;CrossRefGoogle Scholar
  88. Ogg, R.A. 1946, J. Chem. Phys, 14:114, 295;Google Scholar
  89. Ogg, R.A. 1946, Phys. Rev, 69:243, 668.Google Scholar
  90. Parrinello, M., and Rahman, A., 1984, J. Chem. Phys, 80:860 and comments at Colloque Weyl VI, 1983, by A. Rahman.ADSCrossRefGoogle Scholar
  91. Phillips, J.C., and Kleinman, L., 1959, Phys. Rev, 116:187.ADSCrossRefGoogle Scholar
  92. Platzman, R.L., 1955, “Physical and Chemical Aspects of Basic Mechanisms in Radiobiology”, Natl. Res. Council Publ., 305:34; 1953, Radiation Research, 2:1.Google Scholar
  93. Rao, B.K., and Kestner, N.R., 1984, J. Chem. Phys, 80:1587.ADSCrossRefGoogle Scholar
  94. Rossky, P.J., and Schnitker, J., 1988, J. Chem. Phys, 92:4277.CrossRefGoogle Scholar
  95. Sanders, T.M., 1962, Bull. Amer. Phys. Soc. Ser. II, 7:606; 1964, J. Levine, Ph.D. Thesis, University of Minn, (unpublished);Google Scholar
  96. Levine, J.L., and Sanders, 1967, Phys. Rev, 154:138.ADSCrossRefGoogle Scholar
  97. Schnitker, J., and Rossky, P.J., 1987a, J. Chem. Phys, 86:3462.ADSCrossRefGoogle Scholar
  98. Schnitker, J., and Rossky, P.J., 1987b, J. Chem. Phys, 86:3471.ADSCrossRefGoogle Scholar
  99. Schnyders, H., Rice, S.A., and Meyer, L., 1967, Phys. Rev. Let, 15:187.ADSCrossRefGoogle Scholar
  100. Schnyders, H., Rice, S.A., and Meyer, L., 1965, Phys. Rev, 150:127.ADSCrossRefGoogle Scholar
  101. Sprik, M., Impey, R.W., and Klein, M.L., 1985, J. Chem. Phys, 83:5802.ADSCrossRefGoogle Scholar
  102. Springett, B.E., Cohen, M.H., and Jortner, J., 1968, J. Chem. Phys, 48:2720.ADSCrossRefGoogle Scholar
  103. Springett, B.E., 1968, Phys. Rev, 155:138.Google Scholar
  104. Szasz, L., and McGinn, G., 1966, J. Chem. Phys, 45:2898.ADSCrossRefGoogle Scholar
  105. Szasz, L., 1985, “Pseudopotential Theory of Atoms and Molecules”, John Wiley and Sons, New York.Google Scholar
  106. Szepfalusky, P., 1955, Acta Phys. Hung, 5:325.CrossRefGoogle Scholar
  107. Thirumalai, D., Wallqvist, A., and Berne, B.J., 1986, J. Stat. Phys., 43:973.ADSCrossRefGoogle Scholar
  108. Thouless, D.J., 1972, J. Non-Crystalline Solids, 8–10:461.ADSCrossRefGoogle Scholar
  109. Wallqvist, A., Thirumalai, D., and Berne, B., 1986a, J. Stat. Phys, 43:1986.Google Scholar
  110. Wallqvist, A., Thirumalai, D., and Berne, B.J., 1986b, J. Chem. Phys, 85:1583; ibid, 1987b, 86:6404; ibid, 1987a, 86:5689.ADSCrossRefGoogle Scholar
  111. Wallqvist, A., Martyna, G., and Berne, B.J., 1988, J. Phys. Chem, 92:1721.CrossRefGoogle Scholar
  112. Weyl, W., 1864, Pogg. Ann, 121:601.CrossRefGoogle Scholar
  113. Ziman, J.M., 1969, J. Phys. C, 1:1532.ADSCrossRefGoogle Scholar
  114. Ziman, J.M., 1969, J. Phys. C, 1969, 2:1230.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Neil R. Kestner
    • 1
  1. 1.Chemistry DepartmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations