A Review of the Behavior and Biochemistry of dunce, a Mutation of Learning in Drosophila

  • Duncan Byers
Part of the Basic Life Sciences book series (BLSC, volume 16)


When it became apparent in the late nineteenth century that the accumulated experience of an adult animal does not pass to its progeny through the germ cells, biologists took up the problem of how animals learn from experience. The work of C.L. Morgan, E.L. Thorndike, I.P. Pavlov and others revealed that much of learning appears to occur by the formation and strengthening of connections between external situations and the behavior of the animal. The strength of the connections is primarily under the control of certain biologically significant stimuli, including heat, cold, food, water, pinches, bites, poisons, sour or bitter tastes, and related agents. Collectively these are termed reinforcers or rewards. To understand learning further, one wishes to know what neural and molecular changes occur during learning, how reinforcement brings these changes about, and how nerve cells use these changes for generating changed behavior.


Associative Learning Bitter Taste Learn Mutant Cyclic Nucleotide Phosphodiesterase Olfactory Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Klein and E.F. Kandel, Presynaptic modulation of voltage-dependent Ca2+ current: Mechanism for behavioral sensitization in Aplysia californica, Proc. Nat. Acad. Sci. U.S.A. 75: 3512 (1978).CrossRefGoogle Scholar
  2. 2.
    M. O’Shea and P.D. Evans, Potentiation of neuromuscular transmission by an octopaminergic neuron in the locust, J. Exp. Biol. 79: 169 (1979).Google Scholar
  3. 3.
    E.A. Kravitz, P.D. Evans, B.R. Talamo, B.G. Wallace and B.A. Battelle, Octopamine neurons in lobsters: location, morphology, release of octopamine and possible physiological role, Cold Spring Harbor Symp.Quant. Biol. 40: 127 (1975).CrossRefGoogle Scholar
  4. 4.
    M.O. Miyamoto and B. McL. Breckenridge, A cyclic adenosine mono-phosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junction, J. Gen. Physiol. 63: 609 (1974).CrossRefGoogle Scholar
  5. 5.
    V.G. Dethier, R.L. Solomon and L.H. Turner, Sensory input and central excitation and inhibition in the blowfly, J. Comp. Physiol. Psychol. 60: 303 (1965).PubMedCrossRefGoogle Scholar
  6. 6.
    M.C. Nelson, Classical conditioning in the blowfly (Phormia regina): associative and excitatory factors, J. Comp. Physiol. Psychol. 77: 353 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    W.G. Quinn, W.A. Harris and S. Benzer, Conditioned behavior in Drosophila melanogaster, Proc. Nat. Acad. Sci. U.S.A. 71: 708 (1974).CrossRefGoogle Scholar
  8. 8.
    J. Medioni and G. Vaysse, Suppression conditionelle d’un reflexe chez la Drosophile (Drosophila melanogaster): acquisition et extinction, Comptes Rendus Soc. Biol. 169: 1386 (1975).Google Scholar
  9. 9.
    D. Menne and H.C. Spatz, Color learning in Drosophila, J. Comp. Physiol. 114: 301 (1977).CrossRefGoogle Scholar
  10. 10.
    R.W. Siegel and J.C. Hall, Conditioned responses in courtship behavior of normal and mutant Drosophila, Proc. Nat. Acad. Sci. U.S.A. 76: 3430 (1979).CrossRefGoogle Scholar
  11. 11.
    Y. Dudai, Properties of learning and memory in Drosophila melanogaster, J. Comp. Physiol. 114: 69 (1977).CrossRefGoogle Scholar
  12. 12.
    W.G. Quinn and Y. Dudai, Memory phases in Drosophila, Nature 262: 576 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Dudai, Y.-N. Jan, D. Byers, W.G. Quinn and S. Benzer, dunce a mutant of Drosophila deficient in learning, Proc. Nat. Acad. Sci. U.S.A. 73: 1684 (1976).CrossRefGoogle Scholar
  14. 14.
    W.G. Quinn, P.P. Sziber and R. Booker, The Drosophila memory mutant amnesiac, Nature 277: 212 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    E.O. Aceves-Pina and W.G. Quinn, Learning in normal and mutant Drosophila larvae, Science 206: 93 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Dudai, Behavioral plasticity in a Drosophila mutant, dunceDB276 J. Comp. Physiol. 130: 271 (1979).CrossRefGoogle Scholar
  17. 17.
    Y. Dudai and G. Bicker, Comparison of visual and olfactory learning in Drosophila, Naturwissenschaften 65: 494 (1978).CrossRefGoogle Scholar
  18. 18.
    D. Byers, Studies on learning and cyclic AMP phosphodiesterase of the dunce mutant of Drosophila melanogaster, Ph.D. Thesis, California Institute of Technology (1979).Google Scholar
  19. 19.
    H. Rasmussen and D.B.P. Goodman, Relationships between calcium and cyclic nucleotides in cell activation, Physiol. Reviews 57: 421 (1977).Google Scholar
  20. 20.
    J.A. Kiger Jr. and E. Golanty, A cytogenetic analysis of cyclic nucleotide phosphodiesterase activities in Drosophila, Genetics 85: 609 (1977).PubMedGoogle Scholar
  21. 21.
    J.A. Kiger Jr., The consequences of nullosomy for a chromosomal region affecting cyclic AMP phosphodiesterase in Drosophila, Genetics 85: 623 (1977).PubMedGoogle Scholar
  22. 22.
    J.A. Kiger Jr. and E. Golanty, A genetically distinct form of cyclic AMP phosphodiesterase associated with chromomere 3D4 in Drosophila, Genetics 91: 521 (1979).PubMedGoogle Scholar
  23. 23.
    R.L. Davis and J.A. Kiger Jr., Genetic manipulation of cyclic AMP levels in Drosophila melanogaster, Biochem. Biophys. Res. Comm. 81: 1180 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    R.L. Davis, Biochemical characterization and genetic dissection of cyclic nucleotide phosphodiesterases of Drosophila melanogaster, Ph.D. Thesis, University of California at Davis (1979).Google Scholar
  25. 25.
    G. Lefevre, Jr., Dros. Inform. Serv., in press (1980).Google Scholar
  26. 26.
    D. Mohler, Female-sterile mutants in Drosophila melanogaster, Genetics 74: s184 (1973).Google Scholar
  27. 27.
    D. Mohler, Developmental genetics of the Drosophila egg. I. Identification of 59 sex-linked cistrons with maternal effects on embryonic development, Genetics 85: 259 (1977).PubMedGoogle Scholar
  28. 28.
    D. Byers, R.L. Davis, and J.A. Kiger Jr., A defect of cyclic AMP metabolism in the dunce mutant of Drosophila melanogaster, in preparation (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Duncan Byers
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergFederal Republic of Germany

Personalised recommendations