Drug-Receptor Interactions

  • Lewis Aronow
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 97)


It is commonly accepted today that drugs, hormones, or other small molecules that gain access to biological systems bring about their effects by interacting with macromolecules present in the biological system. These macromolecules can then be assigned the term “receptor” for that particular small molecule. Sometimes the assignment of receptors for drugs can be quite straightforward, as in the case of organophosphate insecticides. These agents are enzyme inhibitors, chemically reacting with serine residues in a number of esterase enzymes. The enzymes associated with the hydrolysis of acetylcholine are therefore receptors for organophosphates, and the pharmacological and toxicological effects of these agents can be explained, virtually entirely, by the interaction of the organophosphate with these enzymes.


Glucocorticoid Receptor Mouse Fibroblast Triamcinolone Acetonide Active Glucocorticoid Receptor Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sobell, H. M., and Jain, S. C.: The stereochemistry of actino- mycin binding to DNA. J. Mol. Biol. 68: 1 - 27, (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    Meadows, D. H., Roberts, G. K., and Jardetzky, O.: Nuclear magnetic resonance studies of the structure and binding sites of enzymes. VIII. Inhibitor binding to ribonuclease. J. Mol. Biol. 45: 491 - 511 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    Brewer, C. F., Sternlicht, H., Marcus, D. M., and Grollman, A. P.: Interactions of saccharides with concanvalin A. Mechanism of binding of a-and 8-methyl D- glucopyranoside to concanavalin A as determined by 13C nuclear magnetic resonance. Biochem. 12: 4448 - 4457 (1973).CrossRefGoogle Scholar
  4. 4.
    Ruhmann, A. G., and Berliner, D. L.: Effect of steroids on growth of mouse fibroblasts in vitor. Endocrinology 76: 916 - 927 (1956).CrossRefGoogle Scholar
  5. 5.
    Berliner, D. L., and Ruhmann, A. G.: Comparison of the growth of fibroblasts under the influence of 11-beta hydroxy and 11keto corticosteroids. Endocrinology 78: 373 - 382 (1966).PubMedCrossRefGoogle Scholar
  6. 6.
    Pratt, W. B., and Aronow, L.: The effect of glucocorticoids on protein and nucleic acid synthesis in mouse fibroblasts growing in vitro. J. Biol. Chem. 241: 5244 - 5250 (1966).PubMedGoogle Scholar
  7. 7.
    Nandi, S. J.: Endocrine control of mammary-gland development and function in the C3H/He Crgl mouse. J. Natn. Cancer Inst. 21: 1039 - 1063 (1958).Google Scholar
  8. 8.
    Leffert, H. L.: Growth control of differentiated fetal rat hepatoxytes in primary monolayer culture. VII. Hormonal control of DNA synthesis and its possible significance to the problem of liver regeneration. J. Cell Biol. 62: 792 - 801 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    Thrash, C. R., Ho, T.-S., and Cunningham, D. C.: Structural features of steroids which initiate proliferation of density-inhibited 3T3 mouse fibroblasts. J. Biol. Chem. 249: 6099 - 6103 (1974).PubMedGoogle Scholar
  10. 10.
    Jiminez de Asua, L., Carr, B., Clingan, D., and Rudland, P.: Specific glucocorticoid inhibition of growth promoting effects of prostaglandin F2a on 3T3 cells. Nature 265: 450 - 452 (1977).CrossRefGoogle Scholar
  11. 11.
    Gray, J. G., Pratt, W. B., and Aronow, L.: Effect of glucocorticoids on hexose uptake by mouse fibroblasts in vitro. Biochemistry 10: 277 - 284 (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    Wong, M. D., and Aronow, L.: Identification of a glucocorticoid-sensitive histone protein from mouse fibroblast nuclei Biochem. Biophys. Res Commun. 71: 265 - 271 (1976).CrossRefGoogle Scholar
  13. 13.
    Hackney, J. F., Gross, S. R., Aronow, L., and Pratt, W. B.: Specific glucocorticoid-binding macromolecules from mouse fibroblasts grwoing in vitro. A possible steroid receptor for growth inhibition. Mol. Pharmacol. 6: 500 - 512 (1970).PubMedGoogle Scholar
  14. 14.
    Pratt, W. B. and Ishii, D. N.: Specific binding of glucocorticoids in vitro in the soluble fraction of mouse fibroblasts. Biochem. 11: 1401 - 1410 (1972).CrossRefGoogle Scholar
  15. 15.
    Middlebrook, J. L., Wong, M. D., Ishii, D. N., and Aronow, L.: Subcellular distribution of glucocorticoid receptors in mouse fibroblasts. Biochemistry 14: 180 - 186 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    Ishii, D. N., Pratt, W. B., and Aronow, L.: Steady-state level of the specific glucocorticoid binding component in mouse fibroblasts. Biochemistry 11: 3896 - 3904 (1972).PubMedCrossRefGoogle Scholar
  17. 17.
    Bustin, M., and Cole, R. D.: Species and organ specificity in very lysine-rich histones. J. Biol. Chem. 243: 4500 - 4504 (1968).PubMedGoogle Scholar
  18. 18.
    Panyim, S., and Chalkley, G. R.: The heterogeneity of histones. I. A quantitative analysis of calf histones in very long polyacrilamide gels. Biochemistry 8: 3972 - 3979 (1969).PubMedCrossRefGoogle Scholar
  19. 19.
    Varricchio, F.: Postnatal increase in histone Hla in the rat pancreas. Arch. Biochem. Biophys. 179: 715 - 717 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    Cake, M. H., and Litwack, G.: The glucocorticoid receptor. In: Biochemical Actions of Hormones. Litwack, G. (ed.), Vol. III. New York: Academic Press, 1975.Google Scholar
  21. 21.
    Giannopoulos, G.: Ontogeny of glucocorticoid receptors in rat liver. J. Biol. Chem. 250: 5847 - 5851 (1975).PubMedGoogle Scholar
  22. 22.
    Cake, M. H., Ghisalberti,A. V., and Oliver, I. T.: Cytoplasmic binding of dexamethasone and induction of tyrosine amino-transferase in neonatal rat liver. Biochem. Biophys. Res. Commun. 54: 983 - 990 (1973).Google Scholar
  23. 23.
    Henning, S. J., Ballard, P.L., and Kretchmer, N.: A study of the cytoplasmic receptors for glucocorticoids in intestines of pre-and postweanling rats. J. Biol. Chem. 250: 2073 - 2079 (1975).PubMedGoogle Scholar
  24. 24.
    Henning, S. J., Helman, T. A., and Kretchmer, N.: Studies on normal and precocious appearance of jejunal sucrase in suckling rats. Biol. Neonate 26: 249 - 262 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    Lippman, M. E., Wiggert, B. O., Chader, G. J., and Thompson, E. B.: Glucocorticoid receptors. Characteristics, specificity, and ontogenesis in the embryonic chick neural retina. J. Biol. Chem. 249: 5916 - 5917 (1974).PubMedGoogle Scholar
  26. 26.
    Roth, G. S.: Age-related changes in specific glucocorticoid binding by steroid-responsive tissues of rats. Endocrinology 94: 82 - 90 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    Roth, G. S.: Age-related changes in glucocorticoid binding by rat splenic leukocytes: possible cause of altered adaptive responsiveness. Fed. Proc. 34: 183 - 185 (1975).PubMedGoogle Scholar
  28. 28.
    Roth, G. S.: Reduced glucocorticoid responsiveness and receptor concentration in splenic leukocytes of senescent rats. Biochem. Biophys. Acta 399: 145 - 156 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    Roth, G. S., and Livingston, J. N.: Reductions in glucocorticoid inhibition of glucose oxidation and presumptive glucocorticoid receptor content in rat adipocytes during aging. Endocrinology 99: 831 - 839 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    Shain, S. A., Boesel, R. W., and Axelrod, L. R.: Aging in the rat prostate. Reduction in detectable ventral prostate androgen receptor content. Arch. Biochem. Biophys. 167: 247 - 263 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1978

Authors and Affiliations

  • Lewis Aronow
    • 1
  1. 1.Department of PharmacologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations