Skip to main content

Role of Receptor Coupling to Phosphoinositide Metabolism in the Therapeutic Action of Lithium

  • Chapter
Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

Abstract

Lithium is one of the most effective psychopharmacological treatments for affective illness and offers a potential avenue for furthering our understanding of the neurobiological components of this disorder. Among the most specific and potent actions of lithium is its ability to not only treat the acute episode of mania but also reduce the frequency and severity of recurrent episodes of mania and depression in bipolar patients and depression in unipolar patients (Bunney and Garland, 1984). Thus, the unique action of lithium appears to be its long-term ability to dampen pathological neurobiological oscillations in individuals vulnerable to profound cyclic affective disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia, P and Singhal, R. L., Monamine uptake into synaptosomes from various regions of rat brain following lithium administration and withdrawal, Neuropharmacology 20: 483–487 (1981).

    Article  CAS  Google Scholar 

  • Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J. and Routtenberg, A., Translocation of PKC activity may mediate hippocampal long term potentiation. Science 231: 587–589 (1986).

    Article  CAS  Google Scholar 

  • Allison, J. H., Lithium and brain myo-inositol metabolism, in: Cyclitols and phosphoinositides, pp. 507, Wells, W. W. and Eisenberg, F., Jr. (eds.), Academic Press, New York (1978).

    Google Scholar 

  • Allison, J. H. and Blisner, M. E., Inhibition of the effect of lithium on brain inositol by atropine and scopolamine, Biochem. Biophys. Res. Commun. 68: 1332–1338 (1976).

    Article  CAS  Google Scholar 

  • Allison, J. H., Blisner, M. E., Holland, W. H., Hipps, P. P. and Sherman, W. R., Increased brain myo-inositol 1-phosphate in lithium-treated rats, Biochem. Biophys. Res. Commun. 71: 664–670 (1976).

    Article  CAS  Google Scholar 

  • Allison, J. H. and Stewart, M. A., Reduced brain inositol in lithium-treated rats, Nature (London) New. Biol. 233: 267–268 (1971).

    Article  CAS  Google Scholar 

  • Berridge, M. J., Phosphatidyinositol hydrolysis: A multifunctional transducing system, Mol. Cell Endocrinol. 24: 115–140 (1981).

    Article  CAS  Google Scholar 

  • Berridge, M. J., Inositol triphosphate and diacylglycerol as second messengers, Biochem. J. 220: 345–360 (1984).

    CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P. and Hanley, M. R., Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206: 587–595 (1982).

    CAS  Google Scholar 

  • Berridge, M. J., Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212: 849–858 (1983).

    CAS  Google Scholar 

  • Brown, E., Kendall, D. A. and Nahorski, S. R., Inositol phospholipid hydrolysis in rat cerebral coutical slices: I. receptor characterisation, J. Neurochem. 42: 1379–1387.

    Google Scholar 

  • Bunney, W. E. and Garland, B. L., Lithium and its possible modes of action in: Neurobiology of Mood Disorders, pp. 731–743, Post, R. M. and Ballenger, J. C. (eds.), Williams & Wilkins, Baltimore (1984).

    Google Scholar 

  • Butcher, L. L. and Woolf, N. J., Cholinergic systems: Synopsis of anatomy and overview of physiology and pathology, in: The Biological Substrates of Alzheimer’s Disease, pp. 73–86, Scheibel, A. B., Wechsler, A. F. and Brazier, M. A. B. (eds.), Academic Press, New York (1986).

    Google Scholar 

  • Cameron, O. G. and Smith, C. B., Comparison of acute and chronic lithium treatment on [3H]-norepinephrine uptake by rat brain slices, Psychopharmacology 67: 81–85 (1980).

    Article  CAS  Google Scholar 

  • Colburn, R. W., Goodwin, F. K., Bunney, W. E., Jr. and Davis, J. M., Effect of lithium on the uptake of noradrenaline by synaptosomes, Nature (London) 215: 1395–1397 (1967).

    Article  CAS  Google Scholar 

  • Cooper, R. H., Coll, K. E. and Williamson, J. R., Differential effects of phorbol ester on phenylephrine and vasopressin-induced Ca2+ mobilization in isolated hepatocytes, J. Biol. Chem. 260: 3281–3288 (1985).

    CAS  Google Scholar 

  • Corvera, S. and Garcia-Sainz, J. A., Phorbol esters inhibit alpha adrenergic stimulation of glycogenolysis isolated rat hepatocytes, Biochem. Biophys. Res. Comm. 119: 1128–1133 (1984).

    Article  CAS  Google Scholar 

  • Dilsaver, S. C., Lithium’s effects on muscarinic receptor binding parameters: a relationship to therapeutic efficacy, Biol. Psychiatry 19: 1551–1565 (1984).

    CAS  Google Scholar 

  • Dilsaver, S. C., Konfol, Z., Sackellars, J. C. and Greden, J. F., Antidepressent withdrawal syndromes: evidence supporting the cholinergic overdrive hypothesis, J. Clin. Psychopharm. 3: 157–164 (1983).

    CAS  Google Scholar 

  • Downes, C. P. and Stone, M. A., Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland, Biochem. J. 234: 199–204 (1986).

    CAS  Google Scholar 

  • Drummond, A. H. and Raeburn, C. A., The interaction of lithium with thyro-tropin-releasing hormone-stimulated lipid metabolism in GH pituitary tumour cells, Biochem. J. 224: 129–136 (1984).

    CAS  Google Scholar 

  • Ebstein, R. P., Lerer, B., Shlaufman, M. and Belmaker, R. H., ECS and noradrenaline release, in: ECT: Basic mechanisms, pp. 62–66, Lerer, B., Weiner, R. D. and Belmaker, R. H. (eds.), John Libbey and Company Limited, London (1984).

    Google Scholar 

  • Fisher, S. K., Figueiredo, J. C. and Bartus, R. T., Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine, J. Neurochem. 43: 1171–1179 (1984).

    Article  CAS  Google Scholar 

  • Gillin, C., Muscarinic supersensitivity in affective illness, Proceedings of the American Psychiatric Association, 138: 124 (1985).

    Google Scholar 

  • Gispen, W. H., Phosphoprotein B-50 and phosphoinositides in brain synaptic plasma membranes: a possible feedback relationship, Biochem. Soc. Transact. 14: 163 (1986).

    CAS  Google Scholar 

  • Gonzales, R. A. and Crews, F. T., Characterization of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices, J. Neurosci., 4: 3120–3127 (1984).

    CAS  Google Scholar 

  • Goodnick, P. and Gershon, S., Lithium, in: Handbook of Neurochemistry, pp. 001.9, Lajtha, A. (ed.), Plenum Press, New York (1983).

    Google Scholar 

  • Hallcher, L. M. and Sherman, W. R., The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255: 10896–10901 (1980).

    CAS  Google Scholar 

  • Hermoni, M., Lerer, B., Ebstein, R. P. and Belmaker, R. H., Chronic lithium prevents reserpine-induced supersensitivity of adenylate cyclase, J. Pharm. Pharmacol. 32: 510–511 (1980).

    Article  CAS  Google Scholar 

  • Ho, A. K. S., Loh, H. H., Graves, F., Hitzemann, R. J. and Gershon, S., The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats, Eur. J. Pharmacol. 10: 72–78 (1970).

    Article  CAS  Google Scholar 

  • Hobson, J. A., McCartey, R. W. and Wyzinski, P. N., Sleep cycle oscillation: Recipricol discharge by two brain stem neuronal groups, Science 189: 55–58 (1975).

    Article  CAS  Google Scholar 

  • Hokin, M. R. and Hokin, L. E., Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices, J. Biol. Chem. 203: 967–977 (1953).

    CAS  Google Scholar 

  • Hokin, M. R. and Hokin, L. E., Effects of acetylcholine on phospholipids in the pancreas, J. Biol. Chem. 209: 549–558 (1954).

    CAS  Google Scholar 

  • Honchar, M. P., Olney, J. W. and Sherman, W. R., Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats, Science 220: 323–325 (1983).

    Article  CAS  Google Scholar 

  • Janowsky, A., Labarca, R. and Paul, S. M., Characterization of neurotransmitter receptor-mediated phosphotidylinositol hydrolysis in the rat hippocampus, Life Sci. 35: 1953–1961 (1984).

    Article  CAS  Google Scholar 

  • Janowsky, D. S., El-Yousef, M. K., Davis, J. M. and Sekerke, H. J., A cholinergic-adrenergic hypothesis of mania and depression, Lancet ii: 632–635 (1972).

    Article  Google Scholar 

  • Janowsky, D. S., Abrams, A. A., Groom, G. P., Judd, L. L. and Cloptin, P., Lithium antagonizes cholinergic behavioral effects in rodents, Psychopharmacology, 63: 147–150 (1979).

    Article  CAS  Google Scholar 

  • Janowsky, D. S., Risch, S. C., Judd, L. L., Huey, L. Y. and Parker, D. C., Brain cholinergic system and the pathogenesis of affective disorders, in: Central Cholinergic Mechanisms and Adaptive Dysfunctions, pp. 309–333, Singh, M. D., Warburton, D. M., Lal, H. and Mason, B. (eds.), Plenum Press, New York (1985).

    Chapter  Google Scholar 

  • Jolles, J., Zwiers, H., Van Dongen, C. J., Schotman, P., Wirtz, K. W. A. and Gispen, W. H., Modulation of brain polyphosphoinositide metabolism by ACTH sensitive protein phosphorylation, Nature 286: 623 (1980).

    Article  CAS  Google Scholar 

  • Jope, R. S., Effects of lithium treatment in vitro and in vivo on acetylcholine metabolism in rat brain, J. Neurochem. 33: 487–495 (1979).

    Article  CAS  Google Scholar 

  • Kafka, M. S., Wirz-Justice, A., Naber, D., Marangos, P. J., O’Donohue, T. L. and Wehr, T. A., The effect of lithium on circadian neurotransmitter receptor rhythms, Neuropsychobiology 8: 41–50 (1982).

    Article  CAS  Google Scholar 

  • Kuriyama, K. and Speken, R., Effect of lithium on content and uptake of norepinephrine and 5-hydroxytryptamine in mouse brain synaptosomes and mitochondria, Life Sci. 9: 1213–1220 (1970).

    Article  CAS  Google Scholar 

  • Labarca, R., Janowsky, A., Patel, J. and Paul, S. M., Phorbol esters inhibit agonist-induced [3H] inositol-1-phosphate accumulation in rat hippocampal slices, Biochem. Biophys. Res. Comm., 123: 703–709 (1984).

    Article  CAS  Google Scholar 

  • Lenox, R. H., Hendley, D. D. and Ellis, J., Receptor coupled hydrolysis of phosphoinositides in hippocampal slices: Muscarinic vs adrenergic, New York Acad. Sci. 736 (19871987).

    Google Scholar 

  • Lenox, R. H., Meyers, S., Hendley, D., Ellis, J. and Ehrlich, Y. H., Effects of chronic lithium on protein kinase C activity in rat brain, Society for Neuroscience Abstracts, 12: 566 (1986).

    Google Scholar 

  • Lerer, B., Studies on the role of brain cholinergic systems in the therapeutic mechanisms and adverse effects of ECT and lithium, Biol. Psychiat. 20: 20–40 (1985).

    Article  CAS  Google Scholar 

  • Lerer, B. and Stanley, M., Effect of chronic lithium on cholinergically mediated responses and [3H]QNB binding in rat brain, Brain Res. 334: 211–219 (1985).

    Article  Google Scholar 

  • Levy, A., Zohar, J. and Belmaker, R. H., The effect of chronic lithium pretreatment on rat brain muscarinic receptor regulation, Neuropharmacology 21: 1199–1201 (1982).

    Article  CAS  Google Scholar 

  • Maggi, A. and Enna, S. J., Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment, J. Neurochem 34: 888–889 (1980).

    Article  CAS  Google Scholar 

  • Mash, D. C., Flynn, D. D. and Potter, L. T., Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation, Science 228: 1115–1117 (1985).

    Article  CAS  Google Scholar 

  • Micheli, R. H., Inositol phospholipids and cell surface receptor function, Biochem. Biophys. Acta. 415: 81–147 (1975).

    Article  Google Scholar 

  • Miyauchi, T., Oikawa, S. and Kitada, Y., Effects of lithium chloride on the cholinergic system in different brain regions in mice, Biochem. Pharmacol. 29: 654–657 (1980).

    Article  CAS  Google Scholar 

  • Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308: 693–698 (1984a).

    Article  CAS  Google Scholar 

  • Nishizuka, Y., Turnover of inositol phospholipids and signal transduction, Science 225: 1365–1370 (1984b).

    Article  CAS  Google Scholar 

  • Nishizuka, Y., Studies and perspectives of protein kinase C., Science 233: 305–312 (1986).

    Article  CAS  Google Scholar 

  • Oppenheim, G., Ebstein, R. P. and Belmaker, R., Effect of lithium on the physostigmine-induced behavioral syndrome and plasma cyclic GMP, J. Psychiat. Res. 15: 133–138 (1979).

    Article  CAS  Google Scholar 

  • Poitou, P. and Bohuon, C., Catecholamine metabolism in the rat brain after short and long term lithium administration, J. Neurochem. 25: 535–537 (1975).

    Article  CAS  Google Scholar 

  • Raiteri, M., Leardi, R. and Marchi, M., Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain, J. Pharmacol. and Exp. Ther. 228: 209–214 (1984).

    CAS  Google Scholar 

  • Risch, S. G. and Janowsky, D. S., Cholinergic-adrenergic balance in affective illness, in: Neurobiology of Mood Disorders pp. 652–663, Post R. M. and Ballenger, J. C. (eds.), Williams and Wilkins, Baltimore (1984).

    Google Scholar 

  • Robinson, S. E., Cholinergic pathways in the brain, in: Central Cholinergic Mechanisms and Adaptive Dysfunctions, pp. 37–61, Singh, M. M., Warburton, D. M., Lal, H., Mason, B. (eds.), Plenum Press, New York (1985).

    Chapter  Google Scholar 

  • Robinson, S. E., Cheney, D. L. and Costa, E., Effect of nomifensine and other antidepressant drugs on acetylcholine turnover in various regions of rat brain, Naunyn. Schmeid. Arch. Pharmacol. 304: 263–269 (1978).

    Article  CAS  Google Scholar 

  • Rosenblatt, J. E., Pert, C. B., Tallman, J. F., Pert, A. and Bunney, W. E., Jr., The effect of imipramine and lithium on alpha and beta receptor binding in rat brain, Brain Res. 160: 186–191 (1979).

    Article  CAS  Google Scholar 

  • Samples, J., Janowsky, D. S., Pechnick, R. and Judd, L. L., Lethal effects of physostigmine plus lithium in rats, Psychopharmacology 52: 307–309 (1977).

    Article  CAS  Google Scholar 

  • Schildkraut, J. J., Logue, M. A. and Dodge, G. A., The effect of lithium salts on the turnover and metabolism of norepinephrine in rat brain, Psychopharmacology 14: 135–141 (1969).

    Article  CAS  Google Scholar 

  • Schrama, L. H., De Graan, P. N. E., Eichberg, J. and Gispen, W. H., Feedback control of inositol phospholipid response in rat brain is sensitive to ACTH, Eur. J. Pharmacol. 121: 403 (1986).

    Article  CAS  Google Scholar 

  • Schubert, J., Effect of chronic lithium treatment on monoamine metabolism in the rat brain, Psychopharmacology 32: 301–311 (1973).

    Article  CAS  Google Scholar 

  • Sherman, W. R., Leavitt, A. L., Honchar, M. P., Hallcher, L. M. and Phillips, B. E., Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily d-myo-inositol-1-phosphate in cerebral cortex of the rat, J. Neurochem. 36: 1947–1951 (1981).

    Article  CAS  Google Scholar 

  • Sherman, W. R., Munsell, L. Y., Gish, B. G. and Honchar, M. P., Effects of systemically administered lithium on phosphoinositide metabolism in rat brain, kidney, and testis, J. Neurochem. 44: 798–807 (1985).

    Article  CAS  Google Scholar 

  • Sitaram, N., Gillin, J. C. and Bunney, W. E., Cholinergic and catecholaminergic receptor sensitivity in affective illness: Strategy and theory, in: Neurobiology of Mood Disorders, pp. 629–651, Post, R. M. and Ballenger, J. C. (ed.), Williams and Wilkins, Baltimore (1984).

    Google Scholar 

  • Treiser, S. and Kellar, K. J., Lithium effects on adrenergic receptor supersensitivity in rat brain, Eur. J. Pharmacol. 58: 85–86 (1979).

    Article  CAS  Google Scholar 

  • Van Rooijen, L. A. A., Rossowska, M. and Bazan, N. G., Inhibition of phosphatidylinositol-4-phosphate kinase by its product phosphatidylinositol-4,5-bisphosphate, Biochem. Biophys. Res. Commun. 126: 150 (1985).

    Article  Google Scholar 

  • Williamson, J. R., Role of inositol lipid breakdown in the generation of intracellular signals, Hypertension 8: 140–156 (1986).

    Google Scholar 

  • Wolf, M., Levine, H. III, May, S. W., Cuatrecasas, P. and Sahyoun, J., A model for intracellular translocation of protein kinase C involving synergism between Ca++ and phorbol esters, Nature 317: 546–549 (1985).

    Article  CAS  Google Scholar 

  • Worley, P. F., Baraban, J. M. and Snyder, S. H., Heterogeneous localization of protein kinase C in rat brain: Autoradiographic analysis of phorbol ester receptor binding, J. Neurosci. 6(1): 199–207 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Lenox, R.H. (1987). Role of Receptor Coupling to Phosphoinositide Metabolism in the Therapeutic Action of Lithium. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics