Animal Sonar pp 435-450 | Cite as

Target Detection by Echolocating Bats

  • Bertel Møhl
Part of the NATO ASI Science book series (NSSA, volume 156)


Echolocating bats form a highly diversified group. Their different types of sonar signals have been proposed as a base for classification and identification (e.g. Simmons and Stein, 1980, Ahlèn, 1981). The “design” of the sonar pulses of a given bat species is believed to reflect adaptations or trade-off’s between various properties such as detection sensitivity, ranging, clutter and noise rejection, and inconspicuousness. Operating at the lowest signal to noise ratio, with parameter estimation being higher order processes (Urick, 1983, Altes, 1984) detection can be argued to be the fundamental process of a sonar. Measures of detection sensitivities — or detection thresholds — therefore are informative characteristics of the sonar of a given bat species.


Sound Pressure Obstacle Avoidance Avoidance Experiment Automatic Gain Control Target Strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlèn, I., 1981, Field identification of bats and survey methods based on sounds. Myotis, 18–19: 128.Google Scholar
  2. Altes, R.A., 1984, Echolocation as seen from the viewpoint of Radar/Sonar theory, in “Localization and Orientation in Biology and Engineering”, D. Varju and H.-U. Schnitzler, eds., Springer-Verlag, Berlin.Google Scholar
  3. Au, W.W.L., Carder, D.A., Penner, R.H., and Sconce, B.L., 1985, Demonstra-tion of adaptation in beluga whale echolocation signals, J. Acoust. Soc. Am., 77: 726.PubMedCrossRefGoogle Scholar
  4. Au, W.W.L., Floyd, R.W., Penner, R.H., and Murchison, A.E., 1974, Measurement of echolocation signals of the Atlantic Bottlenose dolphin, Tursiops truncatus (Montagu), in open waters, J. Acoust. Soc. Am., 56: 1280.PubMedCrossRefGoogle Scholar
  5. Au, W.W.L., and Penner, R.H., 1981, Target detection in noise by echolocating Atlantic Bottlenose dolphins, J. Acoust. Soc. Am., 70: 687.CrossRefGoogle Scholar
  6. Au, W.W.L., and Snyder, K.J., 1980, Long-range target detection in open waters by an echolocating Atlantic Bottlenose dolphin (Tursiops truncatus), J. Acoust. Soc. Am., 68: 1077.CrossRefGoogle Scholar
  7. Au, W.W.L., and Turl, C.W., 1984, Dolphin biosonar detection in clutter: Variation in the payoff matrix, J. Acoust. Soc. Am., 76: 955.CrossRefGoogle Scholar
  8. de Boer, E., 1985, Auditory time constants: A paradox?, in “Time resolution in auditory systems”, A. Michelsen ed., Springer, Heidelberg, New York.Google Scholar
  9. Brown, C.H., and Maloney, C.G., 1986, Temporal integration in two species of Old World monkeys: Blue monkeys (Cercopithecus mitis) and greycheeked mangabeys (Cercocebus albigena), J. Acoust. Soc. Am., 79: 1058.PubMedCrossRefGoogle Scholar
  10. Cahlander, D.A., 1967, Discussion of Batteau’s paper, in “Animal Sonar Systems”, R.G. Busnel ed, Laboratoire de Physiologie acoustique, Jouy-en-Josas.Google Scholar
  11. Dalland, J.I., 1965, Hearing sensitivity in bats, Science, 150: 1185.PubMedCrossRefGoogle Scholar
  12. Glaser, W., 1974, Zur Hypothese des Optimalempfangs bei der Fledermausortung, J. Comp. Physiol., 94: 227.CrossRefGoogle Scholar
  13. Green, D.M., 1958, Detection of multiple component signals in noise, J. Acoust. Soc. Am., 30: 904.CrossRefGoogle Scholar
  14. Griffin, D.R., 1958, “Listening in the dark”, Yale University Press, New Haven.Google Scholar
  15. Griffin, D.R., 1967, Discriminative echolocation by bats, in “Animal Sonar Systems”, R.G. Busnel ed, Laboratoire de Physiologie acoustique, Jouy-en-Josas.Google Scholar
  16. Griffin, D.R., 1971, The importance of atmospheric attenuation for the echolocation of bats (Chiroptera), Anim. Behay., 19: 55.CrossRefGoogle Scholar
  17. Griffin, D.R., McCue, J.J.G., and Grinnell, A.D., 1963, The resistance of bats to jamming, J. Exp. Zool., 152: 229.CrossRefGoogle Scholar
  18. Grinnell, A.D., and Schnitzler, H.-U., 1977, Directional sensitivity of echolocation in the Horseshoe bat, Rhinolophus ferrumequinum, J. Comp. Physiol., 116: 63.CrossRefGoogle Scholar
  19. Guilford, J.P., 1954, “Psychometric Methods”, McGraw-Hill, New York. Hahn, W.L., 1908, Some habits and sensory adaptations of cave-inhabiting bats, Biol. Bull., 15: 135.Google Scholar
  20. Jen, P.H.-S., and Kamada, T., 1982, Analysis of orientation signals emitted by the CF-FM bat, Pteronotus p. parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacles, J. Comp. Physiol., 148: 389.CrossRefGoogle Scholar
  21. Joermann, G., 1984, Recognition of spatial parameters by echolocation in the vampire bat, Desmodus rotundus, J. Comp. Physiol., 155: 67.CrossRefGoogle Scholar
  22. Johnson, C.S., 1968, Relationship between absolute threshold and duration-of-tonepulses in the Bottlenose porpoise, J. Acoust. Soc. Amer., 43: 757.CrossRefGoogle Scholar
  23. Kick, S.A., 1982, Target-detection by the echolocating bat, Eptesicus fuscus, J. Comp. Physiol., 145: 431.CrossRefGoogle Scholar
  24. Kick, S.A., and Simmons, J.A., 1984, Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation, J. Neuroscience, 4: 2725.Google Scholar
  25. Lawrence, B.D., and Simmons, J.A., 1982, Measurements of atmospheric attenuation at ultrasonic frequencies and the significane for echolocation by bats, J. Acoust. Soc. Am., 71: 585.PubMedCrossRefGoogle Scholar
  26. McCarthy, J.K, and Jen, P.H.-S., 1983, Bats reject clutter interference for moving targets more successfully than for stationary ones, J. Comp. Physiol., 152: 447.CrossRefGoogle Scholar
  27. Menne, D., and Hackbarth, H., 1986, Accuracy of distance measurement in the bat Eptesicus fuscus: Theoretical aspects and computer simulations, J. Acoust. Soc. Am., 79: 386.PubMedCrossRefGoogle Scholar
  28. Mogensen, F., and Mmhl, B., 1979, Sound radiation patterns in the frequency domain of cries from a vespertilionid bat, J. Comp. Physiol., 134: 165.CrossRefGoogle Scholar
  29. Murchison, A.E., 1980, Detection range and range resolution of echolocating Bottlenose porpoise (Tursiops truncatus), in: “Animal Sonar Systems”, R.G. Busnel and J.F. Fish eds., Plenum, New York.Google Scholar
  30. Møhl, B., 1986, Detection by a pipistrelle bat of normal and reversed replica of its sonar pulses, Acustica, 60:??.Google Scholar
  31. Peff, T.C., and Simmons, J.A., 1972, Horizontal-angle resolution by echolocating bats, J. Acoust. Soc. Am., 51: 2063.CrossRefGoogle Scholar
  32. Peterson, W.W., Birdsall, T.G., and Fox, W.C., 1954, The theory of signal detectability, Trans. IRE Professional Group on Information Theory, PGIT-4, 171.Google Scholar
  33. Roverud, R.C., and Grinnell, A.D., 1985, Discrimination performance and echolocation signal integration requirements for target detection and distance determination in the CF/FM bat, Noctilio albiventris, J. Comp. Physiol., 156: 447.CrossRefGoogle Scholar
  34. Scharf, B., 1970, Critical bands, in “Foundations of Modern Auditory Theory”, J. V. Tobias ed., Academic Press, New York, London.Google Scholar
  35. Schmidt, S., Turke, B., and Vogler, B., 1983, Behavioural audiograms from the bat, Megaderma lyra, Myotis, 21 /22: 62.Google Scholar
  36. Schmidt, U., and Joerman, G., 1985, The influence of acoustical interferences on echolocation in bats, in “Air-borne Animal Sonar Systems”, B. Escudie and Y. Biraud eds., CNRS, Lyon.Google Scholar
  37. Schnitzler, H.-U., and Grinnell, A.D., 1977, Directional sensitivity of echolocation in the Horseshoe bat, Rhinolophus ferrumequinum, J. Comp. Physiol., 116: 51.CrossRefGoogle Scholar
  38. Schnitzler, H.-U., and Henson, O.W., 1980, Performance of airborne animal sonar systems, in: “Animal Sonar Systems”, R.G. Busnel and J.F. Fish eds., Plenum, New York.Google Scholar
  39. Schnitzler, H.-U., Menne, D., Kober, R., and Heblich, K., 1983, The acoustical image of fluttering insects in echolocating bats, in: “Neuroethology and behavioural Physiology”, F. Huber and H. Markl eds., Springer, Heidelberg, New York.Google Scholar
  40. Shimozawa, T., Suga, N., Hendler P., and Schuetze, S., 1974, Directional sensitivity of echolocation system in bats producing frequency-modulated signals, J. Exp. Biol., 60: 53.PubMedGoogle Scholar
  41. Schuller, G., 1984, Natural ultrasonic echoes from wingbeating insects are encoded by collicular neurons in the CF/FM bat, Rhinolophus ferrumequinum, J. Comp. Physiol., 155: 121.CrossRefGoogle Scholar
  42. Schusterman, R.J., Barrett, R., and Moore, P.W.B., 1975, Detection of underwater signals by a California Sea Lion and a Bottlenose Porpoise: Variation in the payoff matrix, J. Acoust. Soc. Am., 57: 1526.PubMedCrossRefGoogle Scholar
  43. Simmons, J.A., 1969, Acoustic radiation patterns for the echolocating bats Chilonycteris rubiginosa and Eptesicus fuscus, J. Acoust. Soc. Am., 46: 1054.CrossRefGoogle Scholar
  44. Simmons, J.A., 1971, Echolocation in bats: signal processing of echoes for target range, Science, 171: 925.PubMedCrossRefGoogle Scholar
  45. Simmons, J.A., 1973, The resolution of target range by echolocating bats, J. Acoust. Soc. Am., 54: 157.PubMedCrossRefGoogle Scholar
  46. Simmons, J.A., 1979, Perception of echo phase information in bat sonar, Science, 204: 1336.PubMedCrossRefGoogle Scholar
  47. Simmons, J.A., 1986, “The Sonar of Bats”, Princeton University Press, in press.Google Scholar
  48. Simmons, J.A., Lavender, W.A., and Lavender, B.A., 1978, Adaptation to acoustic interference by the echolocating bat, E.tesicus fuscus, Ann. E. Afr. Acad. Sci., FIBRC: 97Google Scholar
  49. Simmons, J.A., Lavender, W.A., Lavender, B.A., Childs, J.E., Hulebak, K., Rigden, M.R., Sherman, J., and Woolman, B., 1978, Echolocation by free-tailed bats (Tadarida), J. Comp. Physiol., 125: 291.CrossRefGoogle Scholar
  50. Simmons, J.A., and Stein, R.A., 1980, Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation, J. Comp. Physiol., 135: 61.CrossRefGoogle Scholar
  51. Simmons, J.A., Kick, S.A., Lawrence, B.D., Hale, C., Bard, C., and Escudié, B., 1983, Acuity of horizontal angle discrimination by the echo-locating bat, Eptesicus fuscus, J. Comp. Physiol., 153: 321.CrossRefGoogle Scholar
  52. Strother, G.K., 1961, Note on the possible use of ultrasonic pulse compression by bats. J. Acoust. Soc. Am., 33: 696.CrossRefGoogle Scholar
  53. Strother, G.K., and Mogus, M., 1970, Acoustical beam patterns for bats: Some theoretical considerations. J. Acoust. Soc. Am., 48: 1430.PubMedCrossRefGoogle Scholar
  54. Stapells, D.R., Picton, T.W., and Smith, A.D., 1982, Normal hearing thresholds for clicks, J. Acoust. Soc. Am., 72: 74.PubMedCrossRefGoogle Scholar
  55. Surlykke, A., 1986, Interaction between echolocating bats and their prey. This volume.Google Scholar
  56. Suthers, R.A., and Summers, C.A., 1980, Behavioral audiogram and masked thresholds of the Megachiropteran echolocating bat, Rousettus, J. Comp. Physiol., 136: 227.CrossRefGoogle Scholar
  57. Swets, J.A., 1959, Indices of signal detectability obtained with various psychophysical procedures, J. Acoust. Soc. Am., 31: 511.CrossRefGoogle Scholar
  58. Swets, J.A., Tanner, W.P., and Birdsall, T.G., 1961, Decision processes in perception, Phychol. Rev., 68: 301.CrossRefGoogle Scholar
  59. Troest, N., and Mohl, B., 1986, The detection of phantom targets in noise by serotine bats; negative evidence for the coherent receiver, J. Comp. Physiol., in press.Google Scholar
  60. Urick, R.J., 1983, “Principles of Underwater Sound”, McGraw-Hill Co., New York.Google Scholar
  61. Vogler, B., and Neuweiler, G., 1983, Echolocation in the noctule (Nyctalus noctula) and horseshoe bat (Rhinolophus ferrumequinum), J. Comp. Physiol., 152: 421.CrossRefGoogle Scholar
  62. Yost, W.A., 1980, Man as a mammal: Psychoacoustics, in: “Comparative Studies of Hearing in Vertebrates”, A.N. Popper and R.R. Fay eds., Springer, Heidelberg, New York.Google Scholar
  63. Watkins, W.A., 1976, Biological sound-source location by computer analysis of underwater array data. Deep Sea Research, 23: 175.Google Scholar
  64. Webster, F.A., 1967, Interception performance of ehcolocating bats in the presence of interference, in: “Animal Sonar Systems”, R.G. Busnel ed., Laboratoire de Physiologie acoustique, Jouy-en-Josas.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Bertel Møhl
    • 1
  1. 1.Department of ZoophysiologyUniversity of AarhusDenmark

Personalised recommendations