Mechanisms of Formation of Oxysterols: A General Survey

  • Leland L. Smith
Part of the NATO ASI Series book series (NSSA, volume 189)


Oxysterols, the simple oxidation products of the common sterols of biological membranes and tissues, are of current interest for their crucial role in the biosynthesis of other steroids and for their divers biological activities with implications of relevance to human health.l-4 On the one hand oxysterols include derivatives of cholesterol (cholest-5-en-3B-ol, 1)
formed in the initial regulated enzymic steps directed to biosyntheses of bile acids and steroid hormones required for metabolism in mammals and are thus necessarily present in mammalian tissues. By contrast, oxysterols exhibit toxic manifestations in intact animals and in tissue and cultured cell bioassay systems and have been suggested as being agents that cause or exacerbate human chronic health disorders such as atherosclerosis and cancer. Also, oxysterols have been spectulatively implicated in the regulation of de novo sterol biosynthesis and metabolism. Each of these topics is of great interest, and there is a regular increase in efforts to examine these matters in depth. Together these points make a strong case for thorough understanding of what oxysterols are and how they are derived.


Active Oxygen Species Sterol Biosynthesis Mixed Function Oxidase Cholesterol Oxide Singlet Oxygen Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. L. Smith, “Cholesterol Autoxidation”, Plenum Press, New York, 1981.Google Scholar
  2. 2.
    L. L. Smith, Cholesterol Autoxidation 1981–1986, Chem. Phys. Lipids44: 87 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    L. L. Smith and B. H. Johnson, Biological Activities of Oxysterols, Free Radical Biol. Med. in press.Google Scholar
  4. 4.
    J. P. Beck and A. Crastes de Paulet, eds., “Activités Biologiques des Oxystérols”, Editions INSERM, Paris, 1988.Google Scholar
  5. 5.
    B. J. Koopman, J. C. van der Molen, and B. G. Wolthers, Determination of Some Hydroxycholesterols in Human Serum Samples, J. Chromatog. 416: 1 (1987).CrossRefGoogle Scholar
  6. 6.
    I. Björkhem, E. Reihnér, B. Angelin, S. Ewerth, J.-E. Akerlund, and K. Einarsson, On the Possible Use of the Serum Level of 7a-Hydroxycholesterol as A Marker for Increased Activity of the Cholesterol 7aHydroxylase in Humans, J. Lipid Res. 28: 889 (1987).PubMedGoogle Scholar
  7. 7.
    L. L. Smith, J. I. Teng, Y. Y. Lin, P. K. Seitz, and M. F. McGehee, Lipid Peroxidations of Cholesterol, in: Lipid Peroxides in Biology and Medicine, K. Yagi, ed., Academic Press, New York, 1982, pp. 89–105.Google Scholar
  8. 8.
    L. L. Smith, J. I. Teng, Y. Y. Lin, P. K. Seitz, and M. F. McGehee, Sterol Metabolism. XLVII. Oxidized Cholesterol Esters in Human Tissues, J. Steroid Biochem. 14: 889 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    C. J. W. Brooks, R. M. McKenna, W. J. Cole, J. MacLachlan, and T. D. V. Lawrie, ‘Profile’ Analysis of Oxygenated Sterols in Plasma and Serum, Biochem. Soc. Trans. 11: 700 (1983).Google Scholar
  10. 10.
    I. Björkhem, Assay of Unesterified 7-Oxocholesterol in Human Serum by Isotope Dilution-Mass Spectrometry, Anal. Biochem. 154: 497 (1986).Google Scholar
  11. 11.
    I. Björkhem, O. Breuer, B. Angelin, and S.-A. Wikström, Assay of Unesterified Cholesterol-5,6-epoxide in Human Serum by isotope Dilution Mass Spectrometry. Levels in the Healthy State and in Hyperlipoproteinemia, J. Lipid Res. 29: 1031 (1988).PubMedGoogle Scholar
  12. 12.
    N. B. Javitt, E. Kok, S. Burstein, B. Cohen, and J. Kutscher, 26Hydroxycholesterol. Identification and Quantitation in Human Serum, J. Biol. Chem. 256: 12644 (1981).PubMedGoogle Scholar
  13. 13.
    N. B. Javitt, E. Kok, B. Cohen, and S. Burstein, Cerebrotendinous Xanthomatosis: Reduced Serum 26-Hydroxycholesterol, J. Lipid Res. 23: 627 (1982).PubMedGoogle Scholar
  14. 14.
    C. J. W. Brooks, W. J. Cole, J. MacLachlan, and T. D. V. Lawrie, Some Aspects of the Analysis of Minor Oxygenated Sterols in Serum and in Serum Lipoprotein Fractions, J. Am. Oil Chem. Soc. 62: 622 (1985).CrossRefGoogle Scholar
  15. 15.
    I.-L. Kou and R. P. Holmes, The Analysis of 26-Hydroxycholesterol in Plasma by High Performance Liquid Chromatography, Federation Proc. 45: 311 (1986).Google Scholar
  16. 16.
    L. D. Gruenke, J. C. Craig, N. L. Petrakis, and M. B. Lyon, Analysis of Cholesterol, Cholesterol-5,6-Epoxides and Cholestane-3B,5a,6B-Triol in Nipple Aspirates of Human Breast Fluid by Gas Chromatography/Mass Spectrometry, Biomed. Environm. Mass Spectrom. 14: 335 (1987).CrossRefGoogle Scholar
  17. 17.
    D. R. Brill, “Presence of Cholesterol Epoxide in the Human Prostate Gland”, Ph.D. Dissertation, Rutgers University, New Brunswick,NJ, 1981.Google Scholar
  18. 18.
    W. R. Eberlein and A. A. Patti, Steroids and Sterols in Umbilical Cord Blood, J. Clin. Endocrinol. 25: 1101 (1965).CrossRefGoogle Scholar
  19. 19.
    S. R. Steckbeck, J. A. Nelson, and T. A. Spencer, Enzymic Reduction of an Epoxide to an Alcohol, J. Am. Chem. Soc. 104: 893 (1982).CrossRefGoogle Scholar
  20. 20.
    L. L. Smith, M. J. Kulig, D. Miiller, and G. A. S. Ansari, Oxidation of Cholesterol by Dioxygen Species, J. Am. Chem. Soc. 100: 6206 (1978).CrossRefGoogle Scholar
  21. 21.
    G. Maerker, E. H. Nungesser, and F. J. Bunick, Reaction of Cholesterol 5,6-Epoxides with Simulated Gastric Juice, Lipids 23: 761 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    C. S. Foote, R. B. Abakerli, R. L. Clough, and R. I. Lehrer, On the Question of Singlet Oxygen Production in Polymorphonuclear Leucocytes, In: Bioluminescence and Chemiluminescence, Basic Chemistry and Analytical Applications, M. A. DeLuca and W. D. McElroy, eds., Academic Press, New York, 1981, pp. 81–88.Google Scholar
  23. 23.
    M. A. Johnson and R. Croteau, Biosynthesis of Ascaridole: Iodide Peroxidase-Catalyzed Synthesis of a Monoterpene Endoperoxide in Soluble Extracts of Chenopodium ambrosioidesFruit, Arch. Biochem. Biophys. 235: 254 (1984).CrossRefGoogle Scholar
  24. 24.
    J. Gumulka and L. L. Smith, Ozonization of Cholesterol, J. Am. Chem. Soc. 105: 1972 (1983).CrossRefGoogle Scholar
  25. 25.
    K. Jaworski and L. L. Smith, Ozonization of Cholesterol in Nonparticipating Solvents, J. Orq. Chem. 53: 545 (1988).CrossRefGoogle Scholar
  26. 26.
    H. Itokawa, Y. Tachi, Y. Kamano, and Y. Iitaka, Structure of Gilvanol, A New Triterpene Isolated from Quercus qilvaBlume, Chem. Pharm. Bull. 26: 331 (1978).CrossRefGoogle Scholar
  27. 27.
    H. Ageta, K. Shiojima, R. Kamaya, and K. Masuda, Fern Constituent: Naturally Occurring Adian-5-ene Ozonide in the Leaves of Adiantum monochlamysand Oleandra wallachii, Tetrahedron Lett. 899 (1978).Google Scholar
  28. 28.
    E. J. M. van Haren and A. D. Tait, Inhibition of Cholesterol Side-Chain Cleavage by Intermediates of an Alternative Steroid Biosynthesis Pathway, FEBS Lett. 232: 377 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    N. K. Dodd, C. E. Sizer, and J. Dupont, Cholanoic Acids and Cholesterol 7-α-Hydroxylase Activity in Human Leucocytes, Biochem. Biophys. Res. Commun. 106: 385 (1982).CrossRefGoogle Scholar
  30. 30.
    A. W. Girotti, G. J. Bachowski, and J. E. Jordan, Lipid Peroxidation in Erythrocyte Membranes: Cholesterol Product Analysis in Photosentitized and Xanthine Oxidase-Catalyzed Reactions, Lipids 22: 401 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    J. R. Kanofsky, H. Hoogland, R. Weyer, and S. J. Weiss, Singlet Oxygen Production by Human Eosinophils, J. Biol. Chem. 263: 9692 (1988).PubMedGoogle Scholar
  32. 32.
    D. Galaris, D. Mira, A. Sevanian, E. Cadenas, and P. Hochstein, Co-oxidation of Salicylate and Cholesterol during the Oxidation of Metmyoglobin by H202, Arch. Biochem. Biophys. 262: 221 (1988).CrossRefGoogle Scholar
  33. 33.
    J. Gumulka, J. S. Pyrek, and L. L. Smith, Interception of Discrete Oxygen Species in Aqueous Media by Cholesterol: Formation of Cholesterol Epoxides and Secosterols, Lipids 17: 197 (1982).CrossRefGoogle Scholar
  34. 34.
    B. O. Lindgren, Reactions of Sterols with Bleaching Agents: Reactions of Cholesterol and its Acetate with Aqueous Chlorine Solutions, Svensk Papperstidn. 70: 532 (1967).Google Scholar
  35. 35.
    C. S. Foote, R. B. Abakerli, R. L. Clough, and F. C. Shook, On the Question of Singlet Oxygen Production in Leucocytes, Macrophages and the Dismutation of Superoxide Anion, In: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, W. H. Bannister and J. V. Bannister, eds., Elsevier/North-Holland, New York/Amsterdam/Oxford, 1980, pp. 222–230.Google Scholar
  36. 36.
    S. J. Weiss, S. T. Test, C. M. Eckmann, D. Roos, and S. Regiani, Brominating Oxidants Generated by Human Eosinophils, Science 234: 200 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Sevanian, J. F. Mead, and R. A. Stein, Epoxides as Products of Lipid Autoxidation in Rat Lungs, Lipids 14: 634 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    S. S. Mirvish, D. M. Babcock, A. D. Deshpande, and D. L. Nagel, Identification of Cholesterol as a Mouse Skin Lipid that Reacts with Nitrogen Dioxide to Yield A Nitrosating Agent, and of Cholesterol Nitrite as the Nitrosating Agent Produced in a Chemical System from Cholesterol, Cancer Lett. 31: 97 (1986).Google Scholar
  39. 39.
    T. Kobayashi and K. Kubota, The Reaction of Nitrogen Dioxide with Lung Surface Components: The Reaction with Cholesterol, Chemosphere 9: 777 (1980).CrossRefGoogle Scholar
  40. 40.
    A. M. Kamel. N. D. Weiner, and A. Felmeister, Identification of Cholesterol Nitrate as a Product of the Reaction between NO2 and Cholesterol Monomolecular Films, Chem. Phys. Lipids 6: 225 (1971).PubMedCrossRefGoogle Scholar
  41. 41..
    G. A. S. Ansari, M. T. Moslen, and E. A. Reynolds, Evidence for in vivo Covalent Binding of CC13 Derived from CC14 to Cholesterol of Rat Liver, Biochem. Pharmacol. 31: 3509 (1982).Google Scholar
  42. 42.
    J. E. van Lier and R. Langlois, Chlorinated Hydrocarbon Mediated Cholesterol Degradation, J. Am. Oil Chem. Soc. 62: 622 (1985)Google Scholar
  43. 43.
    R. Sridhar and R. A. Floyd, An Electron Paramagnetic Resonance Study of the Reaction of Nitrosobenzene with Cholesterol, Can. J. Chem. 60: 1574 (1982).Google Scholar
  44. 44.
    T. Watabe, M. Isobe, and M. Kanai, Cholesterol Diet Increases Plasma and Liver Concentrations of Cholesterol Epoxides and Cholestanetriol, J. Pharm. Dyn. 3: 553 (1980).CrossRefGoogle Scholar
  45. 45.
    C. Marco de la Calle, and G. F. Gibbons, Hepatic and Intestinal Formation of Polar Sterols in vivo in Animals Fed on a Cholesterol-supplemented Diet, Biochem. J. 252: 395 (1988).Google Scholar
  46. 46.
    S. H. Kon, Biological Autoxidation. II. Cholesterol Esters as Inert Barrier Antioxidants. Self-Assembly of Porous Membrane Sacs. An Hypothesis, Medical Hypotheses 4: 5569 (1978).Google Scholar
  47. 47.
    S. K. Jain and S. B. Shohet, Apparent Role of Cholesterol as an Erythrocyte Membrane Anti-Oxidant, Clin. Res. 29: 336A (1981).Google Scholar
  48. 48.
    U. L. Bereza, G. J. Brewer, and G. M. Hill, Effect of Dietary Cholesterol on Erythrocyte Peroxidant Stress in vitro and in vivo, Biochim. Biophys. Acta 835: 434 (1985).Google Scholar
  49. 49.
    G. B. Quistad and D. H. Hutson, Lipophilic Xenobiotic Conjugates, In: Xenobiotic Conjugation Chemistry, G. D. Paulson, J. Caldwell, D. H. Hutson, and J. J. Menn, eds., American Chemical Society, Washington,DC, 1986, pp. 204–213.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Leland L. Smith
    • 1
  1. 1.Department of Human Biological Chemistry & GeneticsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations