Theoretical Approaches and Cellular Analogs of Functional Plasticity in the Developing and Adult Vertebrate Visual Cortex

  • Daniel Shulz
  • Yves Frégnac
Part of the NATO ASI Series book series (NSSA, volume 192)


Visual cortical neurons acquire their functional identity through a number of developmental events, particularly those occurring postnatally, when the animal starts to explore its outside environment. Once the integrative properties of neurons are expressed, do they process incoming signals in the same way throughout life, or can they be considered as adaptive devices capable of modifying their functional properties? This chapter will discuss the importance of activity dependent processes involved in functional plasticity, and the determination of the learning capacities of cells in the primary visual cortex of developing and adult mammals.


Visual Cortex Receptive Field Visual Experience Primary Visual Cortex Ocular Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkon, D., 1988, “Memory Traces in the Brain,” Cambridge University Press.Google Scholar
  2. Artola, A., and Singer, W., 1987, Long-term potentiation and NMDA receptors in rat visual cortex. Nature, 330: 649.PubMedCrossRefGoogle Scholar
  3. Baranyi, A., and Féher, O., 1978, Conditioned changes of synaptic transmission in the motor cortex of the cat, Exp. Brain Res., 33:283.PubMedCrossRefGoogle Scholar
  4. Baranyi, A., and Szente, M.B., 1987, Long-lasting potentiation of synaptic transmission requires postsynaptic modifications in the neocortex, Brain Res., 423:378.PubMedCrossRefGoogle Scholar
  5. Bienenstock, E., Cooper, L.N., and Munro, P., 1982, Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci., 2:23.Google Scholar
  6. Bindman, L. J., Murphy, K. P. S. J., and Pockett, S., 1988, Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain, J. Neurophysiol., 60:1053.PubMedGoogle Scholar
  7. Blakemore, C., and Cooper, G. F., 1970, Development of the brain depends on the visual environment, Nature, 228:477.PubMedCrossRefGoogle Scholar
  8. Blakemore, C., Fiorentini, A., and Maffei, L., 1972, A second neural mechanism of binocular depth discrimination, J. Physiol., 226:727.Google Scholar
  9. Buisseret, P., Gary-Bobo, E., and Imbert, M., 1978, Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens, Nature, 272:816.PubMedCrossRefGoogle Scholar
  10. Changeux, J. P., and Danchin, A., 1976, Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks, Nature, 264:705.PubMedCrossRefGoogle Scholar
  11. Changeux, J. P., Courrège, P., and Danchin, A., 1973, A theory of the epigenesis of neuronal networks by selective stabilization of synapses, Proc. Natl. Acad. Sci. USA, 70: 2974.PubMedCrossRefGoogle Scholar
  12. Farley, J., Richards, W. G., Ling, L. J., Liman, E., and Alkon, D. L., 1983, Membrane changes in a single photoreceptor cause associative learning in Hermissenda, Science, 221:1201.Google Scholar
  13. Freeman, R. D., and Bonds, A. B., 1979, Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement, Science, 206:1093.PubMedCrossRefGoogle Scholar
  14. Frégnac, Y., 1979a, Development of orientation selectivity in the primary visual cortex of normally and dark reared kittens. I. Kinetics, Biol. Cybern., 34:187.PubMedCrossRefGoogle Scholar
  15. Frégnac, Y., 1979b, Development of orientation selectivity in the primary visual cortex of normally and dark reared kittens. II. Models, Biol. Cybern., 34:195.PubMedCrossRefGoogle Scholar
  16. Frégnac, Y., 1985, Functional multicompartment models: a kinetic study of the development of orientation selectivity, in: “Models of the Visual Cortex,” D. Rose and V. G. Dobson, eds., J. Wiley and Sons, New York, p. 172.Google Scholar
  17. Frégnac, Y., 1987, Cellular mechanisms of epigenesis in cat visual cortex, in: “Imprinting and cortical plasticity,” J. Rauschecker and P. Marler, eds., J. Wiley and Sons, New York, p. 221.Google Scholar
  18. Frégnac, Y., and Bienenstock, E., 1981, Specific functional modification of individual cortical neurons triggered by vision and passive eye movement in immobilized kittens, in: “Pathophysiology of the Visual System,” Documenta Opthalmol. Proc. Ser., vol. 30, L. Maffei, ed., W. Junk, The Hague, p. 100.Google Scholar
  19. Frégnac, Y., and Imbert, M., 1978, Early development of visual cortical cells in normal and dark reared kittens: relationship between orientation selectivity and ocular dominance, J. Physiol., 278:27.PubMedGoogle Scholar
  20. Frégnac, Y., and Imbert, M., 1984, Development of neuronal selectivity in the primary visual cortex of the cat, Physiol. Rev., 64: 325.PubMedGoogle Scholar
  21. Frégnac, Y., and Shulz, D., 1989, Hebbian synapses in visual cortex, in: “Seeing Contour and Color,” K. Kulikowski, ed., Pergamon Press, Elmsford, NY, p. 711.Google Scholar
  22. Frégnac, Y., Shulz, D., Thorpe, S., and Bienenstock, E., 1988, A cellular analog of visual cortical plasticity, Nature, 333: 367.PubMedCrossRefGoogle Scholar
  23. Frégnac, Y., Shulz, D., and Debanne, D., 1989, The role of co-activity in shaping visual cortical receptive fields, Biomed. Res., 10(S2):11.Google Scholar
  24. Geiger, H., and Singer, W., 1986, A possible role of Ca++ currents in developmental plasticity, Exp. Brain Res., 14:256.Google Scholar
  25. Graves, A., Trotter, Y., and Frégnac, Y., 1987, Role of extraocular muscle proprioception in the development of depth perception in cats, J. Neurophysiol., 58: 816.PubMedGoogle Scholar
  26. Gray, C. M., and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA, 86:1698.PubMedCrossRefGoogle Scholar
  27. Hebb, D. O., 1949, “The Organization of Behavior,” J. Wiley and Sons, New York.Google Scholar
  28. Hirsch, H. V. B., and Spinelli, D. N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats, Science, 168:869.PubMedCrossRefGoogle Scholar
  29. Hubel, D. H., and Wiesel, T.N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 160:106.PubMedGoogle Scholar
  30. Hubel, D. H., and Wiesel, T.N., 1963, Receptive field of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol., 26:994.PubMedGoogle Scholar
  31. Hubel, D. H., and Wiesel, T.N., 1970, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol., 206:419.PubMedGoogle Scholar
  32. Imbert, M., and Buisseret, P., 1975, Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience, Exp. Brain Res., 22:25.PubMedCrossRefGoogle Scholar
  33. Kasamatsu, T., 1983, Neuronal plasticity maintained by the central norepinephrine system in the cat visual cortex, in: “Progress in Psychobiology and Physiological Psychology, vol. 10,” J. M. Sprague and A. M. Epstein, eds., Academic Press, London, p. 1.Google Scholar
  34. Kato, N., Artola, A., and Singer, W., 1988, Susceptibility of visual cortical neurones to undergo long-term potentiation decreases with age, Proc. Eur. Neurosci. Assoc, 11: A311.Google Scholar
  35. Kelso, S. R., Ganong, A.H., and Brown, T.J., 1986, Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA., 83:5326.PubMedCrossRefGoogle Scholar
  36. Malinow, R., and Miller, J. P., 1986, Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation, Nature, 320:529.PubMedCrossRefGoogle Scholar
  37. Marr, D., 1969, A theory of cerebellar cortex, J. Physiol., 202:437.PubMedGoogle Scholar
  38. Mastronarde, D. N., 1983, Interactions between ganglion cells in cat retina, J. Neurophysiol., 49:350.PubMedGoogle Scholar
  39. Müller, C.M., Engel, A.K. and Singer, W., 1988, Development of astrocytes in the cat visual cortex, Soc. Neurosci. Abstr., 14: 745.Google Scholar
  40. Nelson, J. I., Kato, H., and Bishop, P. O., 1977, Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex, J Neurophysiol., 40:260.PubMedGoogle Scholar
  41. Pettigrew, J. D., and Garey, L. J., 1974, Selective modification of single neuron properties in the visual cortex of kittens, Brain Res., 66:160.CrossRefGoogle Scholar
  42. Pettigrew, J. D., and Freeman, R. D., 1973, Visual experience without lines: effect on developing cortical neurons, Science, 182:599.PubMedCrossRefGoogle Scholar
  43. Pettigrew, J. D., and Kasamatsu, T., 1978, Local perfusion of noradrenaline maintains visual cortical plasticity, Nature, 271:761.PubMedCrossRefGoogle Scholar
  44. Pettigrew, J. D., Olson, C., and Barlow, H. B., 1973, Kitten visual cortex: short-term, stimulus induced changes in connectivity, Science, 180:1202.PubMedCrossRefGoogle Scholar
  45. Reiter, H.O., and Stryker, M.P., 1988, Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited, Proc. Natl. Acad. Sci. USA, 85:3623.PubMedCrossRefGoogle Scholar
  46. Sejnowski, J., 1977, Storing covariance with non-linearly interacting neurons, J. Math. Biol., 4: 303.PubMedCrossRefGoogle Scholar
  47. Shinkman, P.G., and Bruce, C.J., 1977, Binocular differences in cortical receptive fields of kittens after rotationally disparate binocular experience, Science, 197: 285.PubMedCrossRefGoogle Scholar
  48. Shinkman, P.G., Isley, M. R., and Rogers, D. G., 1983, Prolonged dark rearing and development of interocular orientation disparity in the visual cortex, J. Neurophysiol., 49:717.PubMedGoogle Scholar
  49. Singer, W., and Tretter, F., 1976, Unusually large receptive fields in cats with restricted visual experience, Exp. Brain Res., 26:171.PubMedCrossRefGoogle Scholar
  50. Spinelli, D. N., and Jensen, F. E., 1979, Plasticity: The mirror of experience, Science, 203: 75.PubMedCrossRefGoogle Scholar
  51. Stanton, P.K., and Sejnowski, T.J., 1989, Associative long-term depression in the hippocampus induced by hebbian covariance, Nature, 339:215.PubMedCrossRefGoogle Scholar
  52. Stent, G., 1973, A physiological mechanism for Hebb’s postulate of learning, Proc. Natl. Acad. Sci. USA, 70: 997.PubMedCrossRefGoogle Scholar
  53. Sutor, B., and Hablitz, J. J., 1989, Long-term potentiation in frontal cortex: role of NMDA-modulated polysynaptic excitatory pathways, Neurosci. Lett., 97:111.PubMedCrossRefGoogle Scholar
  54. Trotter, Y., Gary-Bobo, E., and Buisseret, P., 1981, Recovery of orientation selectivity in kitten primary visual cortex is slowed down by bilateral section of ophthalmic trigeminal afferents, Dev. Brain Res., 1:450.CrossRefGoogle Scholar
  55. Trotter, Y., Frégnac, Y., and Buisseret, P., 1983, Synergie de la vision et de la proprioception extraoculaire dans les mécanismes de plasticité fonctionnelle du cortex visuel primaire du Chaton, C. R. Acad. Soc. Paris, 296:665.Google Scholar
  56. Trotter, Y., Frégnac Y., and Buisseret, P., 1987, The period of susceptibility of visual cortical binocularity to unilateral proprioceptive deafferentation of extraocular muscles, J. Neurophysiol., 58:795.PubMedGoogle Scholar
  57. Von der Malsburg, C., 1973, Self-organization of orientation sensitive cells in the striate cortex, Kybernetik, 14: 85.PubMedCrossRefGoogle Scholar
  58. Wiesel, T. N., and Hubel, D. H., 1963, Single-cell responses in striate cortex of kitten deprived of vision in one eye, J. Neurophysiol., 26:1003.PubMedGoogle Scholar
  59. Wiesel, T.N., 1982, Postnatal development of the visual cortex and the influence of environment (Nobel lecture), Nature, 299: 583.PubMedCrossRefGoogle Scholar
  60. Wigström, H., Gustafsson, B., Huang, Y. Y., and Abraham, W. C., 1986, Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses, Acta Physiol. Scand., 126:317.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Daniel Shulz
    • 1
  • Yves Frégnac
    • 1
  1. 1.Laboratoire de Neurobiologie et Neuropharmacologie du DéveloppementUniversité Paris-SudOrsay cedexFrance

Personalised recommendations