Skip to main content

Theoretical Approaches and Cellular Analogs of Functional Plasticity in the Developing and Adult Vertebrate Visual Cortex

  • Chapter
Systems Approaches to Developmental Neurobiology

Part of the book series: NATO ASI Series ((NSSA,volume 192))

  • 46 Accesses

Abstract

Visual cortical neurons acquire their functional identity through a number of developmental events, particularly those occurring postnatally, when the animal starts to explore its outside environment. Once the integrative properties of neurons are expressed, do they process incoming signals in the same way throughout life, or can they be considered as adaptive devices capable of modifying their functional properties? This chapter will discuss the importance of activity dependent processes involved in functional plasticity, and the determination of the learning capacities of cells in the primary visual cortex of developing and adult mammals.

This chapter to be cited as: Shulz, D., and Frégnac, Y., 1990, Theoretical approaches and cellular analogs of functional plasticity in the developing and adult vertebrate visual cortex, in: “Systems Approaches to Developmental Neurobiology,” P. A. Raymond, S. S. Easter, Jr., and G. M. Innocenti, eds., Plenum Press, New York.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkon, D., 1988, “Memory Traces in the Brain,” Cambridge University Press.

    Google Scholar 

  • Artola, A., and Singer, W., 1987, Long-term potentiation and NMDA receptors in rat visual cortex. Nature, 330: 649.

    Article  PubMed  CAS  Google Scholar 

  • Baranyi, A., and Féher, O., 1978, Conditioned changes of synaptic transmission in the motor cortex of the cat, Exp. Brain Res., 33:283.

    Article  PubMed  CAS  Google Scholar 

  • Baranyi, A., and Szente, M.B., 1987, Long-lasting potentiation of synaptic transmission requires postsynaptic modifications in the neocortex, Brain Res., 423:378.

    Article  PubMed  CAS  Google Scholar 

  • Bienenstock, E., Cooper, L.N., and Munro, P., 1982, Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci., 2:23.

    Google Scholar 

  • Bindman, L. J., Murphy, K. P. S. J., and Pockett, S., 1988, Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain, J. Neurophysiol., 60:1053.

    PubMed  CAS  Google Scholar 

  • Blakemore, C., and Cooper, G. F., 1970, Development of the brain depends on the visual environment, Nature, 228:477.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, C., Fiorentini, A., and Maffei, L., 1972, A second neural mechanism of binocular depth discrimination, J. Physiol., 226:727.

    Google Scholar 

  • Buisseret, P., Gary-Bobo, E., and Imbert, M., 1978, Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens, Nature, 272:816.

    Article  PubMed  CAS  Google Scholar 

  • Changeux, J. P., and Danchin, A., 1976, Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks, Nature, 264:705.

    Article  PubMed  CAS  Google Scholar 

  • Changeux, J. P., Courrège, P., and Danchin, A., 1973, A theory of the epigenesis of neuronal networks by selective stabilization of synapses, Proc. Natl. Acad. Sci. USA, 70: 2974.

    Article  PubMed  CAS  Google Scholar 

  • Farley, J., Richards, W. G., Ling, L. J., Liman, E., and Alkon, D. L., 1983, Membrane changes in a single photoreceptor cause associative learning in Hermissenda, Science, 221:1201.

    CAS  Google Scholar 

  • Freeman, R. D., and Bonds, A. B., 1979, Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement, Science, 206:1093.

    Article  PubMed  CAS  Google Scholar 

  • Frégnac, Y., 1979a, Development of orientation selectivity in the primary visual cortex of normally and dark reared kittens. I. Kinetics, Biol. Cybern., 34:187.

    Article  PubMed  Google Scholar 

  • Frégnac, Y., 1979b, Development of orientation selectivity in the primary visual cortex of normally and dark reared kittens. II. Models, Biol. Cybern., 34:195.

    Article  PubMed  Google Scholar 

  • Frégnac, Y., 1985, Functional multicompartment models: a kinetic study of the development of orientation selectivity, in: “Models of the Visual Cortex,” D. Rose and V. G. Dobson, eds., J. Wiley and Sons, New York, p. 172.

    Google Scholar 

  • Frégnac, Y., 1987, Cellular mechanisms of epigenesis in cat visual cortex, in: “Imprinting and cortical plasticity,” J. Rauschecker and P. Marler, eds., J. Wiley and Sons, New York, p. 221.

    Google Scholar 

  • Frégnac, Y., and Bienenstock, E., 1981, Specific functional modification of individual cortical neurons triggered by vision and passive eye movement in immobilized kittens, in: “Pathophysiology of the Visual System,” Documenta Opthalmol. Proc. Ser., vol. 30, L. Maffei, ed., W. Junk, The Hague, p. 100.

    Google Scholar 

  • Frégnac, Y., and Imbert, M., 1978, Early development of visual cortical cells in normal and dark reared kittens: relationship between orientation selectivity and ocular dominance, J. Physiol., 278:27.

    PubMed  Google Scholar 

  • Frégnac, Y., and Imbert, M., 1984, Development of neuronal selectivity in the primary visual cortex of the cat, Physiol. Rev., 64: 325.

    PubMed  Google Scholar 

  • Frégnac, Y., and Shulz, D., 1989, Hebbian synapses in visual cortex, in: “Seeing Contour and Color,” K. Kulikowski, ed., Pergamon Press, Elmsford, NY, p. 711.

    Google Scholar 

  • Frégnac, Y., Shulz, D., Thorpe, S., and Bienenstock, E., 1988, A cellular analog of visual cortical plasticity, Nature, 333: 367.

    Article  PubMed  Google Scholar 

  • Frégnac, Y., Shulz, D., and Debanne, D., 1989, The role of co-activity in shaping visual cortical receptive fields, Biomed. Res., 10(S2):11.

    Google Scholar 

  • Geiger, H., and Singer, W., 1986, A possible role of Ca++ currents in developmental plasticity, Exp. Brain Res., 14:256.

    Google Scholar 

  • Graves, A., Trotter, Y., and Frégnac, Y., 1987, Role of extraocular muscle proprioception in the development of depth perception in cats, J. Neurophysiol., 58: 816.

    PubMed  CAS  Google Scholar 

  • Gray, C. M., and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA, 86:1698.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O., 1949, “The Organization of Behavior,” J. Wiley and Sons, New York.

    Google Scholar 

  • Hirsch, H. V. B., and Spinelli, D. N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats, Science, 168:869.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T.N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 160:106.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T.N., 1963, Receptive field of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol., 26:994.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T.N., 1970, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol., 206:419.

    PubMed  CAS  Google Scholar 

  • Imbert, M., and Buisseret, P., 1975, Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience, Exp. Brain Res., 22:25.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., 1983, Neuronal plasticity maintained by the central norepinephrine system in the cat visual cortex, in: “Progress in Psychobiology and Physiological Psychology, vol. 10,” J. M. Sprague and A. M. Epstein, eds., Academic Press, London, p. 1.

    Google Scholar 

  • Kato, N., Artola, A., and Singer, W., 1988, Susceptibility of visual cortical neurones to undergo long-term potentiation decreases with age, Proc. Eur. Neurosci. Assoc, 11: A311.

    Google Scholar 

  • Kelso, S. R., Ganong, A.H., and Brown, T.J., 1986, Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA., 83:5326.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., and Miller, J. P., 1986, Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation, Nature, 320:529.

    Article  PubMed  CAS  Google Scholar 

  • Marr, D., 1969, A theory of cerebellar cortex, J. Physiol., 202:437.

    PubMed  CAS  Google Scholar 

  • Mastronarde, D. N., 1983, Interactions between ganglion cells in cat retina, J. Neurophysiol., 49:350.

    PubMed  CAS  Google Scholar 

  • Müller, C.M., Engel, A.K. and Singer, W., 1988, Development of astrocytes in the cat visual cortex, Soc. Neurosci. Abstr., 14: 745.

    Google Scholar 

  • Nelson, J. I., Kato, H., and Bishop, P. O., 1977, Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex, J Neurophysiol., 40:260.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J. D., and Garey, L. J., 1974, Selective modification of single neuron properties in the visual cortex of kittens, Brain Res., 66:160.

    Article  Google Scholar 

  • Pettigrew, J. D., and Freeman, R. D., 1973, Visual experience without lines: effect on developing cortical neurons, Science, 182:599.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D., and Kasamatsu, T., 1978, Local perfusion of noradrenaline maintains visual cortical plasticity, Nature, 271:761.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D., Olson, C., and Barlow, H. B., 1973, Kitten visual cortex: short-term, stimulus induced changes in connectivity, Science, 180:1202.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, H.O., and Stryker, M.P., 1988, Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited, Proc. Natl. Acad. Sci. USA, 85:3623.

    Article  PubMed  CAS  Google Scholar 

  • Sejnowski, J., 1977, Storing covariance with non-linearly interacting neurons, J. Math. Biol., 4: 303.

    Article  PubMed  CAS  Google Scholar 

  • Shinkman, P.G., and Bruce, C.J., 1977, Binocular differences in cortical receptive fields of kittens after rotationally disparate binocular experience, Science, 197: 285.

    Article  PubMed  CAS  Google Scholar 

  • Shinkman, P.G., Isley, M. R., and Rogers, D. G., 1983, Prolonged dark rearing and development of interocular orientation disparity in the visual cortex, J. Neurophysiol., 49:717.

    PubMed  CAS  Google Scholar 

  • Singer, W., and Tretter, F., 1976, Unusually large receptive fields in cats with restricted visual experience, Exp. Brain Res., 26:171.

    Article  PubMed  CAS  Google Scholar 

  • Spinelli, D. N., and Jensen, F. E., 1979, Plasticity: The mirror of experience, Science, 203: 75.

    Article  PubMed  CAS  Google Scholar 

  • Stanton, P.K., and Sejnowski, T.J., 1989, Associative long-term depression in the hippocampus induced by hebbian covariance, Nature, 339:215.

    Article  PubMed  CAS  Google Scholar 

  • Stent, G., 1973, A physiological mechanism for Hebb’s postulate of learning, Proc. Natl. Acad. Sci. USA, 70: 997.

    Article  PubMed  CAS  Google Scholar 

  • Sutor, B., and Hablitz, J. J., 1989, Long-term potentiation in frontal cortex: role of NMDA-modulated polysynaptic excitatory pathways, Neurosci. Lett., 97:111.

    Article  PubMed  CAS  Google Scholar 

  • Trotter, Y., Gary-Bobo, E., and Buisseret, P., 1981, Recovery of orientation selectivity in kitten primary visual cortex is slowed down by bilateral section of ophthalmic trigeminal afferents, Dev. Brain Res., 1:450.

    Article  Google Scholar 

  • Trotter, Y., Frégnac, Y., and Buisseret, P., 1983, Synergie de la vision et de la proprioception extraoculaire dans les mécanismes de plasticité fonctionnelle du cortex visuel primaire du Chaton, C. R. Acad. Soc. Paris, 296:665.

    CAS  Google Scholar 

  • Trotter, Y., Frégnac Y., and Buisseret, P., 1987, The period of susceptibility of visual cortical binocularity to unilateral proprioceptive deafferentation of extraocular muscles, J. Neurophysiol., 58:795.

    PubMed  CAS  Google Scholar 

  • Von der Malsburg, C., 1973, Self-organization of orientation sensitive cells in the striate cortex, Kybernetik, 14: 85.

    Article  PubMed  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., 1963, Single-cell responses in striate cortex of kitten deprived of vision in one eye, J. Neurophysiol., 26:1003.

    PubMed  CAS  Google Scholar 

  • Wiesel, T.N., 1982, Postnatal development of the visual cortex and the influence of environment (Nobel lecture), Nature, 299: 583.

    Article  PubMed  CAS  Google Scholar 

  • Wigström, H., Gustafsson, B., Huang, Y. Y., and Abraham, W. C., 1986, Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses, Acta Physiol. Scand., 126:317.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Shulz, D., Frégnac, Y. (1990). Theoretical Approaches and Cellular Analogs of Functional Plasticity in the Developing and Adult Vertebrate Visual Cortex. In: Raymond, P.A., Easter, S.S., Innocenti, G.M. (eds) Systems Approaches to Developmental Neurobiology. NATO ASI Series, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7281-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7281-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7283-7

  • Online ISBN: 978-1-4684-7281-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics