Production of Specialty Mushrooms in North America: Shiitake and Morels

  • Thomas J. Leonard
  • Thomas J. Volk


There is increasing interest in the American marketplace for mushrooms other than the common white button mushroom. The trend is toward species with more flavor. Among the new mushrooms making common appearances are the oyster mushroom and shiitake, more formally known as Pleurotus spp. and Lentinula (=Lentinus) edodes, respectively. A third type of mushroom, although less common, is the morel, Morchella spp, which is just beginning to be developed commercially. Since morels and shiitake are the more flavorful of the three mushrooms and are more difficult to produce, we focus our discussion on commercial cultivation practices for these two mushrooms and the challenges ahead for making them more readily available.


Fruiting Body Biological Efficiency Fruiting Body Formation Mushroom Production Sclerotium Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, M. 1974. Fruit body formation of Lentinus edodes on the artificial media. Mushroom Science 9: 415–422.Google Scholar
  2. Baker, K. F. and Matkin, O. A., 1959. An unusual occurrence of morels in cultivated beds of cymbidiums. Plant Disease Reports 43: 1032.Google Scholar
  3. Brock, T. D. 1951. Studies on the nutrition of Morchella esculenta Fries. Mycologia 43: 402–422.CrossRefGoogle Scholar
  4. Chang, S. T. 1980. Mushrooms as human food. Bioscience 30: 399–344.CrossRefGoogle Scholar
  5. Chang, S. T., and P. Miles. 1989. Edible Mushrooms and Their Cultivation. CRC Press, Boca Raton, FL.Google Scholar
  6. Diehle, D. A., and Royse, D. J. 1986. Shiitake cultivation on sawdust: evaluation of selected genotypes for biological efficiency and mushroom size. Mycologia 78: 929–933.CrossRefGoogle Scholar
  7. Fron, G. 1905. Sur les conditions de développement du mycélium de morille. C.R. Hebd. Seances Acad. Sci. 140: 1187–1189.Google Scholar
  8. Han, Y. H., Ueng, W. T., Chen, L. C., and Cheng, S. 1981. Physiology and ecology of Lentinus edodes. Mushroom Science 11: 623–658.Google Scholar
  9. Hawker, L. E. 1956. The Physiology of Reproduction in Fungi. Cambridge University Press, New York.Google Scholar
  10. Heim, R. 1936. La culture des morilles. Rev. Mycol 1, Suppl 1: 10–11, 19–25.Google Scholar
  11. Hutner, S. H., Provalosi, L., Schatz, A., and Haskins, C. P. 1950. Some approaches to the study of the role of metals in the metabolism of organisms. Proceedings American Philosophical Society 94: 152–170.Google Scholar
  12. Janardhanan, K. K., Kaul, T. N., and Husain, A. 1970. Use of vegetable wastes for the production of fungal protein from Morchella species. Journal of Food Science Technology 7: 197–199.Google Scholar
  13. Kaul, T. N. I977a. Physiological studies on Morchella spp. 1. Carbon utilization. Bulletin of the Botanical Society (Bengal) 31: 35–42.Google Scholar
  14. Kaul, T. N. 1977b. Physiological studies on Morchella species. II. Nitrogen utilization. Mushroom Journal 58: 2–6.Google Scholar
  15. Kosaric, N., and Miyata, N. 1981. Growth of morel mushroom mycelium in cheese whey. Journal Dairy Research 48: 149–162.CrossRefGoogle Scholar
  16. Labaneiah, M. E. O., Abou-Donia, S. A., Mohamed, M. S., and EI-Zalaki, E. M. 1979. Technical note: utilization of citrus wastes for the production of fungal protein. Journal of Food Technology 14: 95–100.CrossRefGoogle Scholar
  17. Leatham, G. F. 1982. Cultivation of shiitake, the Japanese forest mushroom on logs: a potential industry for the U.S. Forest Products Journal 32: 29–35.Google Scholar
  18. Leatham, G. F. 1979. Selected physiological and biochemical studies on growth and development of shiitake the edible Japanese forest mushroom Lentimus edodes (Berk.) Sing. PhD. thesis, University of Wisconsin, Dept. of Biochemistry, 336 pp.Google Scholar
  19. Leatham, G.F. 1985. Extracellular enzymes produced by the cultivated mushroom Lenti-nus edodes during degradation of a lignocellulosic medium. Applied and Environmental Microbiology 50: 859–867.PubMedGoogle Scholar
  20. Leatham, G. F., and Stahmann, M. A. 1984. Stimulatory effect of nickel or tin on the fruiting of Lentinus edodes. Transactions of the British Mycological Society 83: 513–517.CrossRefGoogle Scholar
  21. Leatham, G. F., and Stahmann, M. A. 1987. Effect of light and aeration on the fruiting of Lentinula edodes. Transactions of the British Mycological Society 88: 9–20.CrossRefGoogle Scholar
  22. Leonard, T. J. 1971. Phenoloxidase activity and fruiting body formation in Schizophyllum commune. Journal of Bacteriology 106: 162–167.PubMedGoogle Scholar
  23. Leonard, T. J., and Dick, S. 1973. Induction of haploid fruiting by mechanical injury in Schizophyllum commune. Mycologia 65: 809–822.CrossRefGoogle Scholar
  24. Leonard, T. J., and Phillips, L. E. 1973. A study of phenoloxidase activity during the reproductive cycle in Schizophyllum commune. Journal of Bacteriology 114: 7–10.Google Scholar
  25. Leudy, A., Kosaric, N., and Zajic, J.E. 1977. Transfer function matrix of the continuous cultivation system ofMorchella crassipes in ammonia base waste sulfite liquor. Biotechnology and Bioengineering 19: 1653–1666.CrossRefGoogle Scholar
  26. Litchfield, J. H. 1967. Morel mushroom mycelium as a food flavoring material. Biotechnology and Bioengineering 9: 289–304.CrossRefGoogle Scholar
  27. Lu, S. I., Leonard, T. J., Dick, S., and Leatham, G. F. 1988. A new strategy for genetic improvement of edible fungi through enhancement of their lignocellose degrading and fruiting abilities. Micologia Neotropical Applicada 1: 5–19.Google Scholar
  28. Madelin, M. F. 1956. Studies on the nutrition of Coprinus lagopus Fr., especially as affecting fruiting. Annals of Botany (London-New Species) 20: 307–330.Google Scholar
  29. Martin, A. M. 1982. Submerged growth of Morchella esculenta in peat hydrolysates. Biotechnology Letters 4: 13–18.CrossRefGoogle Scholar
  30. Miller, M. W., and Jong, S. C. 1987. Commercial cultivation of shiitake in sawdust filled plastic bags. Developments in Crop Science 10: 421–426. Elsevier, Amsterdam.Google Scholar
  31. Molliard, M. 1904. Forme conidienne et sclerotes de Morchella esculenta Pers Rev. Gen. Bota. 16: 209–218.Google Scholar
  32. Ower, R. 1982. Notes on the development of the morel ascocarp. Mycologia 74: 142–144.CrossRefGoogle Scholar
  33. Ower, R., Mills, G., and Malachowski, J. 1986. Cultivation of Morchella. U.S. Patent No. 4, 594, 809.Google Scholar
  34. Ower, R., Mills, G., and Malachowski, J. 1989. Cultivation of Morchella. U.S. Patent No. 4, 757, 640.Google Scholar
  35. Ramsbottom, J. 1953. Mushrooms and Toadstools. Collins, London.Google Scholar
  36. Robbins, W. J., and Hervey, A. 1959. Wood extract and growth of Morchella. Mycologia 51: 356–363.CrossRefGoogle Scholar
  37. Robbins, W. J., and Hervey, A. 1965. Manganese, calcium and filtrate factor for Morchella crassipes. Mycologia 57: 262–274.CrossRefGoogle Scholar
  38. Royse, D. J. 1985. Effect of spawn run time and substrate nutrition on yield and size of the shiitake mushroom. Mycologia 77: 756–762.CrossRefGoogle Scholar
  39. Royse, D. J. 1989. Factors influencing the production rate of shiitake. Mushroom Journal for the Tropics 9: 127–138.Google Scholar
  40. Royse, D. J., and Bahler, C. C. 1986. Effects of genotype, spawn run time, and substrate formulation on biological efficiency of shiitake. Applied and Environmental Microbiology 52: 1452–1427.Google Scholar
  41. Royse, D. J., Spear, M. C., and May, B. 1985. Single and joint segregation of marker loci in the shiitake mushroom, Lentinus edodes. Journal of General and Applied Microbiology 29: 217–222.CrossRefGoogle Scholar
  42. Roze, E. 1883. Le parasitsme du Morchella esculenta Pers. sur l’Helianthus tuberosus. Bull. Soc. Bot. France 29: 166–167.Google Scholar
  43. San Antonio, J. P. 1981. Cultivation of the shiitake mushroom. Hort. Sci. 16: 151–156.Google Scholar
  44. Szuecs, J. 1956. Mushroom culture. U.S. Patent No. 2, 761, 246.Google Scholar
  45. Thrower, L. B., and Thrower, S. L. 1968. Movements of nutrients in fungi. II. The effect of reproductive structures. Australian Journal of Botany 16: 81–87.CrossRefGoogle Scholar
  46. Townsend, B. B. 1957. Nutritional factors influencing the production of sclerotia by certain fungi. Annals of Botany (London-New Series) 21: 153–166.Google Scholar
  47. Volk, T. J., and Leonard, T. J. 1989a. Experimental studies on the morel. I. Heterokaryon formation between monoascosporous strains of Morchella. Mycologia 81: 523–531.CrossRefGoogle Scholar
  48. Volk, T. J., and Leonard, T. J. 1989b. Physiological and environmental studies of sclerotium formation and maturation in Morchella. Applied and Environmental Microbiology 55: 3095–3100.Google Scholar
  49. Volk, T. J., and Leonard T. J. 1990. Cytology of the life cycle of Morchella. Mycological Research 94: 399–406.CrossRefGoogle Scholar
  50. Willetts, H. J. 1972. The morphogenesis and possible evolutionary origins of fungal sclerotia. Biological Review 47: 516–536.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1992

Authors and Affiliations

  • Thomas J. Leonard
  • Thomas J. Volk

There are no affiliations available

Personalised recommendations