Advertisement

Indicator Organisms

  • George J. Banwart

Abstract

Indicator organisms have been used since 1892, the year Schardinger tested water for what is now called Escherichia coli, instead of testing for Salmonella typhi. It is difficult to detect S. typhi in a water supply. The presence of E coli indicates that there might have been contamination from sewage and that Salmonella or other intestinal pathogens might be present.

Keywords

Fecal Coliform Total Coliform Fecal Contamination Enteric Pathogen Indicator Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbiss, J. S.; Wilson, J. M.; Blood, R. M.; and Jarvis, B. 1981. A comparison of minerals modified glutamate medium with other media for the enumeration of coliforms in delicatessen foods. j Appi. Bacterial. 51: 121–127.CrossRefGoogle Scholar
  2. Abshire, R. L., and Guthrie, R. K. 1973. Fluorescent antibody as a method for the detection of fecal pollution. Escherichia coli as indicator organisms. Can. J. Microbiol. 19: 201–206.CrossRefGoogle Scholar
  3. Alvarez, R. J. 1984. Use of fluorogenic assays for the enumeration of Escherichia coli from selected seafoods. J. Food Sci. 49: 1186–1187, 1232.Google Scholar
  4. Anderson, J. M., and Baird-Parker, A. C. 1975. A rapid and direct plate method for enumerating Escherichia coli biotype 1 in food. J. Appi. Bacteriol. 39: 111–117.CrossRefGoogle Scholar
  5. Andrews, W. H., and Presnell, M. W. 1972. Rapid recovery of Escherichia coli from estuarine water. App. Microbiol. 23: 521–523.Google Scholar
  6. Andrews, W. H.; Wilson, C. R.; Poelma, P. L.; Bullock, L. K.; McClure, F. D.; and Gentile, D. E. 1981. Interlaboratory evaluation of the AOAC method and the A-1 procedure for recovery of fecal coliforms from foods. j Assoc. Office. Anal. Chem. 64: 1116–1121.Google Scholar
  7. APHA. 1984. Compendium of Methods for the Microbiological Examination of Foods. 2d ed. M. L. Speck, ed. Washington, D. C.: The American Public Health Association.Google Scholar
  8. Bagley, S. T., and Seidler, R.J. 1977. Significance of fecal coliform-positive Klebsiella. App!. Environ. Microbiol. 33: 1141–1148.Google Scholar
  9. Berg, G.; Dahling, D. R.; Brown, G. A.; and Berman, D. 1978. Validity of fecal coliforms, total coliforms and fecal streptococci as indicators of viruses in chlorinated primary sewage effluents. Appl. Environ. Microbiol. 36: 880–884.Google Scholar
  10. Bettelheim, K. A.; Bushrod, E M.; Chandler, M. E.; Cooke, E. M.: O’Farrell, S.; and Shooter, R. A. 1974. Escherichia coli serotype distribution in man and animals./. Hyg. Camb. 73: 467–471.Google Scholar
  11. Brodsky, M. H.; Boleszczuk, P.; and Entis, P. 1982. Effect of stress and resuscitation on recovery of indicator bacteria from foods using hydrophobic grid-membrane filtration. J. Food Prot. 45: 1326–1331.Google Scholar
  12. Buchanan, R. E., and Gibbons, N. E. 1974. Bergey’s Manual of Determinative Bacteriology. 8th Edition. Baltimore, Md.: The William and Wilkins Co.Google Scholar
  13. Burlingame, G. A.; McElhaney,J,; Bennett, M.; and Pipes, W. O. 1984. Bacterial interference with coliform colony sheen production on membrane filters. App!. Environ. Microbiol. 47: 56–60.Google Scholar
  14. Carrillo, M.; Estrada, E.; and Hazen, T. C. 1985. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. App!. Environ. Microbiol. 50: 468–476.Google Scholar
  15. Chandler, D. S., and Craven, J. A. 1978. Environmental factors affectingEscherichia coli and Salmonella typhimurium numbers on land used for effluent disposal. Aust. J. Agr. Res. 29: 577–585.CrossRefGoogle Scholar
  16. Clark, J. A. 1980. The influence of increasing numbers of nonindicator organisms upon the detection of indicator orgaisms by the membrane filter and presence-absence tests. Can. J. Microbiol. 26: 827–832.CrossRefGoogle Scholar
  17. Corlett, D. A., Jr. 1974. Setting microbiological limits in the food industry. Food. Technol. 28 (10): 34–40.Google Scholar
  18. Cox, N. A.; Mercuri, A. J.; Carson, M. O.; and Tanner, D. A. 1979. Comparative study of Micro-ID, Minitek and conventional methods with Enterobacteriaceae freshly isolated from foods. J. Food Prot. 42: 735–738.Google Scholar
  19. Cox, N. A.; Mercuri, A. J.; Juven, B. J.; and Thomson, J. E. 1975. Enterobacteriaceae at various stages of poultry chilling./. Food Sci. 40: 44–46.Google Scholar
  20. DePaola, A.; Presnell, M. W.; Motes, M. L., Jr.; McPhearson, R. M.; Twedt, R. M.; Becker, R. E.; and Zywno, S. 1983. Non-01 Vibrio cholerae in shellfish, sediment and waters of the U.S. Gulf Coast./ Food. Prot. 46: 802–806.Google Scholar
  21. Drion, E. F., and Mossel, D. A. A. 1972. Mathematical-ecological aspects of the examination for Enterobacteriaceae of foods processed for safety. J. App!. Bacteriol. 35: 233–239.CrossRefGoogle Scholar
  22. Drion, E. F., and Mossel, D. A. A. 1977. The reliability of the examination of foods, processed for safety, for enteric pathogens and Enterobacteriaceae: A mathematical and ecological study. J. Hyg. Camb. 78: 301–324.CrossRefGoogle Scholar
  23. Dufour, A. P.; Strickland, E. R.; and Cabelli, V. J. 1981. Membrane filter method for enumerating Escherichia coli. Appl. Environ. Microbiol. 41: 1152–1158.Google Scholar
  24. Duncan, D. W., and Razzell, W. E. 1972. Klebsiella biotypes among coliforms isolated from forest environments and farm produce. Appl. Microbiol. 24: 933–938.Google Scholar
  25. Ellender, R. D.; Mapp, J. B.; Middlebrooks, B. L.; Cook, D. W.; and Cake, E. W. 1980. Natural enterovirus and fecal coliform contamination of Gulf Coast oysters./ Food Prot. 43: 105–110.Google Scholar
  26. Entis, P. 1983. Enumeration of coliforms in nonfat dry milk and canned custard by hydrophobic grid membrane filter method: Collaborative study./ Assoc. Offic. Anal. Chem. 66: 897–904.Google Scholar
  27. Entis, P. 1984. Enumeration of total coliforms, fecal coliforms, and Escherichia coli in foods by hydrophobic grid membrane filter: Supplementary report./. Assoc. Offic. Anal. Chem. 67: 811–823.Google Scholar
  28. Evison, L. M., and James, A. 1973. A comparison of the distribution of intestinal bacteria in British and East African water sources. J. Appl. Bacteriol. 36: 109–118.CrossRefGoogle Scholar
  29. Facklam, R. R., and Moody, M. D. 1970. Presumptive identification of group D streptococci: The bile-esculin test. Appl. Microbiol. 20: 245–250.Google Scholar
  30. FDA. 1978. Bacteriological Analytical Manual for Foods. 5th ed. Washington, D.C.: Food and Drug Administration.Google Scholar
  31. Feng, P. C. S., and Hartman, P. A. 1982. Fluorogenic assays for immediate confirmation of Escherichia coli. Appl. Environ. Microbiol. 43: 1320–1329.Google Scholar
  32. Finstein, M. S. 1973. “Sanitary Bacteriology.” In CRC Handbook of Microbiology. Vol. I. Organismic Microbiology. A. I. Laskin and H. A. Lechevalier, eds. Cleveland, Ohio: CRC Press.Google Scholar
  33. Firstenberg-Eden, R.; Van Sise, M. L.; Zindulis, J.; and Kahn, P. 1984. Impedimetric estimation of coliforms in dairy products./ Food. Sci. 49: 1449–1452.CrossRefGoogle Scholar
  34. Franzblau, S. G.; Hinnebusch, B. J.; Kelley, L. M.; and Sinclair, N. A. 1984. Effect of noncoliforms on coliform detection in potable groundwater: Improved recovery with an anaerobic membrane filter technique. Appi. Environ. Microbiol. 48: 142–148.Google Scholar
  35. Fugate, K. J.; Cliver, D. O.; and Hatch, M. T. 1975. Enteroviruses and potential bacterial indicators in Gulf Coast oysters. J. Milk Food Technol. 38: 100–104.Google Scholar
  36. Gärtner, H.; Havemeister, G.; Waldvogel, B.; and Wuthe, H. H. 1975. Qualitative and quantitative Salmonella investigations and their hygienic valuation in connection with the E. coli titre, demonstrated with examples from the coastal waters of Kiel Bight (Western Baltic Sea). Zbl. Bakt. Hyg., I. Abt. Orig. B160: 246–267.Google Scholar
  37. Goyal, S. M.; Adams, W. N.; O’Malley, M. L.; and Lear, D. W. 1984. Human pathogenic viruses at sewage sludge disposal sites in the middle Atlantic region. Appl. Environ. Microbiol. 48: 758–763.Google Scholar
  38. Hackney, C. R.; Ray, B.; and Speck, M. L. 1980. Incidence of Vibrio parahaemolyticus in anthe microbiological quality of seafood in North Carolina. J. Food Prot. 43: 769–773.Google Scholar
  39. Hall, H. E.; Brown, D. E; and Lewis, K. H. 1967. Examination of market foods for coliform organisms. Appi. Microbiol. 15: 1062–1069.Google Scholar
  40. Hartley, J. C.; Reinbold, G. W.; and Vedamuthu, E. R. 1968. Bacteriological methods for evaluation of milk quality. A. review. I. Use of bacterial tests to evaluate production conditions. J. Milk Food Technol. 31: 315–322.Google Scholar
  41. Hartman, P. A.; Hartman, P. S.; and Lanz, W. W. 1975. Violet red bile 2 agar for stressed coliforms. Appi. Microbiol. 29: 537–539.Google Scholar
  42. Hastback, W. G. 1981. Short incubation of presumptive media for detection of fecal coliforms in shellfish. Appl. Environ. Microbiol. 42: 1125–1127.Google Scholar
  43. Hinton, M.; Linton, A. H.; and Hedges, A. J. 1985. The ecology of Escherichia coli in calves reared as dairy-cow replacements./ Appi. Bacteriol. 58: 131–138.CrossRefGoogle Scholar
  44. Hood, M. A.; Ness, G. E.; and Blake, N.J. 1983. Relationship among fecal coliforms, Esch- erichia coli, and Salmonella spp. in shellfish. Appl. Environ. Microbiol. 45: 122–126.Google Scholar
  45. Hunt, D. A.; Lucas, J. P.; McClure, F. D.; Springer, J.; and Newell, R. 1981. Comparison of modified A-1 method with standard EC test for recovery of fecal coliform bacteria for shellfish./ Assoc. Offic. Anal. Chem. 64: 607–610.Google Scholar
  46. Käferstein, F. K. 1977. The occurrence of antibiotic-resistant microorganisms (Escherichia coli type I and coliforms) in some foods. Zbl. Bakt. Hyg. I. Abt. Orig. B164: 111–118.Google Scholar
  47. Kenard, R. P., and Valentine, R. S. 1974. Rapid determination of the presence of enteric bacteria in water. Appi. Microbiol. 27: 484–487.Google Scholar
  48. Kibbey, H.J.; Hagedorn, C.; and McCoy, E. L. 1978. Use of fecal streptococci as indicators of pollution in soil. Appl. Environ. Microbiol. 35: 711–717.Google Scholar
  49. Koburger, J. A., and Miller, M. L. 1985. Evaluation of a fluorogenic MPN procedure for determining Escherichia coli in oysters. J. Food Prot. 48: 244–245.Google Scholar
  50. LeChevallier, M. W.; Jakanoski, P. E.; Camper, A. K.; and McFeters, G. A. 1984. Evaluation of m-T7 agar as a fecal coliform medium. Appi. Environ. Microbiol. 48: 371–375.Google Scholar
  51. Lee, W. 1972. Improved procedure for the identification of group D enterococci with two new media. Appi. Microbiol. 24: 1–3.Google Scholar
  52. Loken, K. I.; Culbert, K. H.; Solee, R. E.; and Pomeroy, B. S. 1968. Microbiological quality of protein feed supplements produced by rendering plants. Appi. Microbiol. 16: 1002–1005.Google Scholar
  53. Lovell, R. T., and Barkate, J.A. 1969. Incidence and growth of some health-related bacteria in commercial freshwater crayfish (genus Procambarus). J. Food Sci. 34: 268–271.CrossRefGoogle Scholar
  54. Mara, D. D., and Oragui, J. I. 1983. Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution./ Appi. Bacteriol. 55: 349–357.CrossRefGoogle Scholar
  55. Marcus, K. A., and Amling, H.J. 1973. Escherichia coli field contamination of pecan nuts. Appl. Microbiol. 26: 279–281.Google Scholar
  56. Mason, T. G., and Richardson, G. 1981. Escherichia coli and the human gut: Some ecological considerations./ Appl. Bacteriol. 51: 1–16.Google Scholar
  57. Menon, A. S. 1985. Salmonellae and pollution indicator bacteria in municipal and food processing effluents and the Cornwallis River. Can. J. Microbiol. 31: 598–603.CrossRefGoogle Scholar
  58. Mercuri, A.J.; Cox, N. A.; Carson, M. O.; and Tanner, D. A. 1978. Relation of Enterobacteriaceae counts to Salmonella contamination of market broilers./ Food Prot. 41: 427–428.Google Scholar
  59. Mitchell, D. O., and Starzyk, M.J. 1975. Survival of Salmonella and other indicator microorganisms. Can J. Microbiol. 21: 1420–1421.CrossRefGoogle Scholar
  60. Mossel, D. A. A. 1967. Ecological principles and methodological aspects of the examination of foods and feeds for indicator microorganisms. J. Assoc. Offic. Anal. Chem. 50: 91–104.Google Scholar
  61. Mossel, D. A. A. 1982. Marker (index and indicator) organisms in food and drinking water. Semantics, ecology, taxonomy and enumeration. Antonie van Leeuwenhoek 48: 609–611.CrossRefGoogle Scholar
  62. Motes, M. L., Jr.; McPhearson, R. M., Jr.; and DePaola, A., Jr. 1984. Comparison of three international methods with APHA method for enumeration of Escherichia coli in estuarine waters and shellfish./ Food Prot. 47: 557–561.Google Scholar
  63. Mundt, J. O. 1973. Litmus milk reaction as a distinguishing feature between Streptococcus faecalis of human and non-human origins./ Milk Food Technol. 36: 364–367.Google Scholar
  64. Mundt, J. O. 1982. The ecology of the streptococci. Microb. Ecol. 8: 355–369.CrossRefGoogle Scholar
  65. Nelson, C. L.; Fox, T. L.; and Busta, F. F. 1984. Evaluation of dry medium (petrifilm VRB) for coliform.numeration. J. Food Prot. 47: 520–525.Google Scholar
  66. Newman, J. S., and O’Brien, R. T. 1975. Gas chromatographic presumptive test for coliform bacteria in water. Appl. Microbiol. 30: 584–588.Google Scholar
  67. Oblinger, J. L.; Kennedy, J. E., Jr.; and Langston, D. M. 1982. Microflora recovered from foods on violet red bile agar with and without glucose and incubated at different temperatures. J. Food Prot. 45: 948–952.Google Scholar
  68. Pagel, J. E., and Hardy, G. M. 1980. Comparison of selective media for the enumeration and identification of fecal streptococci from natural sources. Can. J. Microbiol. 26: 1320–1327.CrossRefGoogle Scholar
  69. Petzel, J. P., and Hartman, P. A. 1985. Monensin-based medium for determination of total Gram-negative bacteria and Escherichia coli. Appl. Environ. Microbiol. 49: 925–933.Google Scholar
  70. Ray, B., and Speck, M. L. 1978. Plating procedure for the enumeration of coliforms from dairy products. Appi. Environ. Microbiol. 35: 820–822.Google Scholar
  71. Reber, C. L., and Marshall, R. T. 1982. Comparison of VRB and VRB-2 agars for recovery of stressed coliforms from stored acidified half-and-half./ Food Prot. 45: 584–585.Google Scholar
  72. Resnick, I. G., and Levin, M. A. 1981. Assessment of bifidobacteria as indicators of human fecal pollution. Appl. Environ. Microbiol. 42: 433–438.Google Scholar
  73. Richards, G. P. 1979. Evaluation of Millipore coli-count samplers for monitoring fecal coliforms in the blue crab, Callinectes sapidus. Appi. Environ. Microbiol. 38: 341–343.Google Scholar
  74. Robison, B. J. 1984. Evaluation of a fluorogenic assay for detection of Escherichia coli in foods. Appi. Environ. Microbiol. 48: 285–288.Google Scholar
  75. Schleifer, K. H., and Kilpper-Bälz, R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Bacteriol. 34: 31–34.CrossRefGoogle Scholar
  76. Shannon, E. L.; Clark, W. S., Jr.; and Reinbold, G. W. 1965. Chlorine resistance of enterococci. J. Milk Food Technol. 28: 120–123.Google Scholar
  77. Sharpe, A. N.; Rayman, M. K.; Burgener, D. M.; Conley, D.; Loit, A.; Milling, M.; Peterkin, P. I.; Purvis, U.; and Malcolm, S. 1983. Collaborative study of the MPN, Anderson-BairdParker direct plating, and hydrophobic grid-membrane filter methods for the enumeration of Escherichia coli biotype 1 in foods. Can. J. Microbiol. 29: 1247–1252.CrossRefGoogle Scholar
  78. Shaw, B. G., and Roberts, T. A. 1982. Indicator organisms in raw meats. Antonie van Leeuwenhoek 48: 612–613.CrossRefGoogle Scholar
  79. Silliker, J. H. 1982. Selecting methodology to meet industry’s microbiological goals for the 1980s. Food Technol. 36 (12): 65–70.Google Scholar
  80. Silverman, M. P., and Munoz, E. F. 1979. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants. Appi. Environ. Microbiol. 37: 521–526.Google Scholar
  81. Smith, M.R. 1971. Vibrio parahemolyticus. Clin. Med. 78: 22–25.Google Scholar
  82. Solberg, M., et al. 1976. What do microbiological indicator tests tell us about the safety of foods? Food Product Development 10 (9): 72–80.Google Scholar
  83. Splittstoesser, D. F.; Bowers, J.; Kerschner, L.; and Wilkison, M. 1980. Detection and incidence of Geotrichum candidum in frozen blanched vegetables. J. Food Sci. 45: 511–513.CrossRefGoogle Scholar
  84. Splittstoesser, D. F.; Stewart, J. D.; and Wilkison, M. 1982. Survival of fecal coliforms in frozen vegetable homogenates. J Food Prot. 45: 1041–1043.Google Scholar
  85. Stadhouders, J.; Hup, G.; and Hassing, E 1982. The conceptions index and indicator organisms discussed on the basis of the bacteriology of spray-dried milk powder. Neth. Milk Dairy J. 36: 231–260.Google Scholar
  86. Standridge, J. H., and Delfino, J. J. 1981. A-1 medium: Alternative technique for fecal coliform organism enumeration in chlorinated wastewaters. Appl. Environ. Microbiol. 42: 918–920.Google Scholar
  87. Steller, R. E. 1984. Coliphages as indicators of enteroviruses. Appl. Environ. Microbiol. 48: 668–670.Google Scholar
  88. Stiles, M. E., and Ng, L. 1981. Biochemical characteristics and identification of Enterobacteriaceae isolated from meats. Appl. Environ. Microbiol. 41: 639–645.Google Scholar
  89. Strauss, W. M.; Malaney, G. W.; and Tanner, R. D. 1984. The impedance method for monitoring total coliforms in wastewaters. Part I. Background and Methodology. Folio Microbiol. 29: 162–169.CrossRefGoogle Scholar
  90. Surkiewicz, B. F.; Harris, M. E.; Elliot, R. P.; Macaluso, J. E; and Strand, M. M. 1975. Bacteriological survey of raw beef patties produced at establishments under federal inspection. Appl. Microbiol. 29: 331–334.Google Scholar
  91. Tenpenney, J. R.; Tanner, R. D.; and Malaney, G. W. 1984. The impedance method for monitoring total coliforms in wastewaters. Part II. Results and evaluation. Folic Microbiol. 29: 170–180.CrossRefGoogle Scholar
  92. Tompkin, R. B. 1983. Indicator organisms in meat and poultry products. Food Technol. 37 (6): 107–110.Google Scholar
  93. Varga, S., and Doucet, A. 1984. Quantitative estimation of fecal coliforms in fresh and frozen fishery products by APHA and modified A-1 procedures. J. Food Prot. 47: 60 2603.Google Scholar
  94. Wait, D. A.; Hackney, C. R.; Carrick, R. J.; Lovelace, G.; and Sobsey, M. D. 1983. Enteric bacterial and viral pathogens and indicator bacteria in hard shell clams. J Food Prot. 46: 493–496.Google Scholar
  95. Wentsel, R. S.; O’Neill, P. E.; and Kitchens, J. F. 1982. Evaluation of coliphage detection as a rapid indicator of water quality. Appi. Environ. Microbiol. 43: 430–434.Google Scholar
  96. Wright, R. C. 1984. A new selective and differential agar medium for Escherichia coli and coliform organisms.,. Appt. Bacteriol. 56: 381–388.Google Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • George J. Banwart
    • 1
  1. 1.Department of MicrobiologyThe Ohio State UniversityUSA

Personalised recommendations