Skip to main content

Indicator Organisms

  • Chapter
Basic Food Microbiology

Abstract

Indicator organisms have been used since 1892, the year Schardinger tested water for what is now called Escherichia coli, instead of testing for Salmonella typhi. It is difficult to detect S. typhi in a water supply. The presence of E coli indicates that there might have been contamination from sewage and that Salmonella or other intestinal pathogens might be present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbiss, J. S.; Wilson, J. M.; Blood, R. M.; and Jarvis, B. 1981. A comparison of minerals modified glutamate medium with other media for the enumeration of coliforms in delicatessen foods. j Appi. Bacterial. 51: 121–127.

    Article  CAS  Google Scholar 

  • Abshire, R. L., and Guthrie, R. K. 1973. Fluorescent antibody as a method for the detection of fecal pollution. Escherichia coli as indicator organisms. Can. J. Microbiol. 19: 201–206.

    Article  CAS  Google Scholar 

  • Alvarez, R. J. 1984. Use of fluorogenic assays for the enumeration of Escherichia coli from selected seafoods. J. Food Sci. 49: 1186–1187, 1232.

    Google Scholar 

  • Anderson, J. M., and Baird-Parker, A. C. 1975. A rapid and direct plate method for enumerating Escherichia coli biotype 1 in food. J. Appi. Bacteriol. 39: 111–117.

    Article  CAS  Google Scholar 

  • Andrews, W. H., and Presnell, M. W. 1972. Rapid recovery of Escherichia coli from estuarine water. App. Microbiol. 23: 521–523.

    CAS  Google Scholar 

  • Andrews, W. H.; Wilson, C. R.; Poelma, P. L.; Bullock, L. K.; McClure, F. D.; and Gentile, D. E. 1981. Interlaboratory evaluation of the AOAC method and the A-1 procedure for recovery of fecal coliforms from foods. j Assoc. Office. Anal. Chem. 64: 1116–1121.

    CAS  Google Scholar 

  • APHA. 1984. Compendium of Methods for the Microbiological Examination of Foods. 2d ed. M. L. Speck, ed. Washington, D. C.: The American Public Health Association.

    Google Scholar 

  • Bagley, S. T., and Seidler, R.J. 1977. Significance of fecal coliform-positive Klebsiella. App!. Environ. Microbiol. 33: 1141–1148.

    CAS  Google Scholar 

  • Berg, G.; Dahling, D. R.; Brown, G. A.; and Berman, D. 1978. Validity of fecal coliforms, total coliforms and fecal streptococci as indicators of viruses in chlorinated primary sewage effluents. Appl. Environ. Microbiol. 36: 880–884.

    CAS  Google Scholar 

  • Bettelheim, K. A.; Bushrod, E M.; Chandler, M. E.; Cooke, E. M.: O’Farrell, S.; and Shooter, R. A. 1974. Escherichia coli serotype distribution in man and animals./. Hyg. Camb. 73: 467–471.

    Google Scholar 

  • Brodsky, M. H.; Boleszczuk, P.; and Entis, P. 1982. Effect of stress and resuscitation on recovery of indicator bacteria from foods using hydrophobic grid-membrane filtration. J. Food Prot. 45: 1326–1331.

    Google Scholar 

  • Buchanan, R. E., and Gibbons, N. E. 1974. Bergey’s Manual of Determinative Bacteriology. 8th Edition. Baltimore, Md.: The William and Wilkins Co.

    Google Scholar 

  • Burlingame, G. A.; McElhaney,J,; Bennett, M.; and Pipes, W. O. 1984. Bacterial interference with coliform colony sheen production on membrane filters. App!. Environ. Microbiol. 47: 56–60.

    CAS  Google Scholar 

  • Carrillo, M.; Estrada, E.; and Hazen, T. C. 1985. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. App!. Environ. Microbiol. 50: 468–476.

    CAS  Google Scholar 

  • Chandler, D. S., and Craven, J. A. 1978. Environmental factors affectingEscherichia coli and Salmonella typhimurium numbers on land used for effluent disposal. Aust. J. Agr. Res. 29: 577–585.

    Article  Google Scholar 

  • Clark, J. A. 1980. The influence of increasing numbers of nonindicator organisms upon the detection of indicator orgaisms by the membrane filter and presence-absence tests. Can. J. Microbiol. 26: 827–832.

    Article  Google Scholar 

  • Corlett, D. A., Jr. 1974. Setting microbiological limits in the food industry. Food. Technol. 28 (10): 34–40.

    Google Scholar 

  • Cox, N. A.; Mercuri, A. J.; Carson, M. O.; and Tanner, D. A. 1979. Comparative study of Micro-ID, Minitek and conventional methods with Enterobacteriaceae freshly isolated from foods. J. Food Prot. 42: 735–738.

    Google Scholar 

  • Cox, N. A.; Mercuri, A. J.; Juven, B. J.; and Thomson, J. E. 1975. Enterobacteriaceae at various stages of poultry chilling./. Food Sci. 40: 44–46.

    Google Scholar 

  • DePaola, A.; Presnell, M. W.; Motes, M. L., Jr.; McPhearson, R. M.; Twedt, R. M.; Becker, R. E.; and Zywno, S. 1983. Non-01 Vibrio cholerae in shellfish, sediment and waters of the U.S. Gulf Coast./ Food. Prot. 46: 802–806.

    Google Scholar 

  • Drion, E. F., and Mossel, D. A. A. 1972. Mathematical-ecological aspects of the examination for Enterobacteriaceae of foods processed for safety. J. App!. Bacteriol. 35: 233–239.

    Article  CAS  Google Scholar 

  • Drion, E. F., and Mossel, D. A. A. 1977. The reliability of the examination of foods, processed for safety, for enteric pathogens and Enterobacteriaceae: A mathematical and ecological study. J. Hyg. Camb. 78: 301–324.

    Article  CAS  Google Scholar 

  • Dufour, A. P.; Strickland, E. R.; and Cabelli, V. J. 1981. Membrane filter method for enumerating Escherichia coli. Appl. Environ. Microbiol. 41: 1152–1158.

    CAS  Google Scholar 

  • Duncan, D. W., and Razzell, W. E. 1972. Klebsiella biotypes among coliforms isolated from forest environments and farm produce. Appl. Microbiol. 24: 933–938.

    CAS  Google Scholar 

  • Ellender, R. D.; Mapp, J. B.; Middlebrooks, B. L.; Cook, D. W.; and Cake, E. W. 1980. Natural enterovirus and fecal coliform contamination of Gulf Coast oysters./ Food Prot. 43: 105–110.

    Google Scholar 

  • Entis, P. 1983. Enumeration of coliforms in nonfat dry milk and canned custard by hydrophobic grid membrane filter method: Collaborative study./ Assoc. Offic. Anal. Chem. 66: 897–904.

    CAS  Google Scholar 

  • Entis, P. 1984. Enumeration of total coliforms, fecal coliforms, and Escherichia coli in foods by hydrophobic grid membrane filter: Supplementary report./. Assoc. Offic. Anal. Chem. 67: 811–823.

    CAS  Google Scholar 

  • Evison, L. M., and James, A. 1973. A comparison of the distribution of intestinal bacteria in British and East African water sources. J. Appl. Bacteriol. 36: 109–118.

    Article  CAS  Google Scholar 

  • Facklam, R. R., and Moody, M. D. 1970. Presumptive identification of group D streptococci: The bile-esculin test. Appl. Microbiol. 20: 245–250.

    CAS  Google Scholar 

  • FDA. 1978. Bacteriological Analytical Manual for Foods. 5th ed. Washington, D.C.: Food and Drug Administration.

    Google Scholar 

  • Feng, P. C. S., and Hartman, P. A. 1982. Fluorogenic assays for immediate confirmation of Escherichia coli. Appl. Environ. Microbiol. 43: 1320–1329.

    CAS  Google Scholar 

  • Finstein, M. S. 1973. “Sanitary Bacteriology.” In CRC Handbook of Microbiology. Vol. I. Organismic Microbiology. A. I. Laskin and H. A. Lechevalier, eds. Cleveland, Ohio: CRC Press.

    Google Scholar 

  • Firstenberg-Eden, R.; Van Sise, M. L.; Zindulis, J.; and Kahn, P. 1984. Impedimetric estimation of coliforms in dairy products./ Food. Sci. 49: 1449–1452.

    Article  Google Scholar 

  • Franzblau, S. G.; Hinnebusch, B. J.; Kelley, L. M.; and Sinclair, N. A. 1984. Effect of noncoliforms on coliform detection in potable groundwater: Improved recovery with an anaerobic membrane filter technique. Appi. Environ. Microbiol. 48: 142–148.

    CAS  Google Scholar 

  • Fugate, K. J.; Cliver, D. O.; and Hatch, M. T. 1975. Enteroviruses and potential bacterial indicators in Gulf Coast oysters. J. Milk Food Technol. 38: 100–104.

    Google Scholar 

  • Gärtner, H.; Havemeister, G.; Waldvogel, B.; and Wuthe, H. H. 1975. Qualitative and quantitative Salmonella investigations and their hygienic valuation in connection with the E. coli titre, demonstrated with examples from the coastal waters of Kiel Bight (Western Baltic Sea). Zbl. Bakt. Hyg., I. Abt. Orig. B160: 246–267.

    Google Scholar 

  • Goyal, S. M.; Adams, W. N.; O’Malley, M. L.; and Lear, D. W. 1984. Human pathogenic viruses at sewage sludge disposal sites in the middle Atlantic region. Appl. Environ. Microbiol. 48: 758–763.

    CAS  Google Scholar 

  • Hackney, C. R.; Ray, B.; and Speck, M. L. 1980. Incidence of Vibrio parahaemolyticus in anthe microbiological quality of seafood in North Carolina. J. Food Prot. 43: 769–773.

    Google Scholar 

  • Hall, H. E.; Brown, D. E; and Lewis, K. H. 1967. Examination of market foods for coliform organisms. Appi. Microbiol. 15: 1062–1069.

    CAS  Google Scholar 

  • Hartley, J. C.; Reinbold, G. W.; and Vedamuthu, E. R. 1968. Bacteriological methods for evaluation of milk quality. A. review. I. Use of bacterial tests to evaluate production conditions. J. Milk Food Technol. 31: 315–322.

    Google Scholar 

  • Hartman, P. A.; Hartman, P. S.; and Lanz, W. W. 1975. Violet red bile 2 agar for stressed coliforms. Appi. Microbiol. 29: 537–539.

    CAS  Google Scholar 

  • Hastback, W. G. 1981. Short incubation of presumptive media for detection of fecal coliforms in shellfish. Appl. Environ. Microbiol. 42: 1125–1127.

    CAS  Google Scholar 

  • Hinton, M.; Linton, A. H.; and Hedges, A. J. 1985. The ecology of Escherichia coli in calves reared as dairy-cow replacements./ Appi. Bacteriol. 58: 131–138.

    Article  CAS  Google Scholar 

  • Hood, M. A.; Ness, G. E.; and Blake, N.J. 1983. Relationship among fecal coliforms, Esch- erichia coli, and Salmonella spp. in shellfish. Appl. Environ. Microbiol. 45: 122–126.

    CAS  Google Scholar 

  • Hunt, D. A.; Lucas, J. P.; McClure, F. D.; Springer, J.; and Newell, R. 1981. Comparison of modified A-1 method with standard EC test for recovery of fecal coliform bacteria for shellfish./ Assoc. Offic. Anal. Chem. 64: 607–610.

    CAS  Google Scholar 

  • Käferstein, F. K. 1977. The occurrence of antibiotic-resistant microorganisms (Escherichia coli type I and coliforms) in some foods. Zbl. Bakt. Hyg. I. Abt. Orig. B164: 111–118.

    Google Scholar 

  • Kenard, R. P., and Valentine, R. S. 1974. Rapid determination of the presence of enteric bacteria in water. Appi. Microbiol. 27: 484–487.

    CAS  Google Scholar 

  • Kibbey, H.J.; Hagedorn, C.; and McCoy, E. L. 1978. Use of fecal streptococci as indicators of pollution in soil. Appl. Environ. Microbiol. 35: 711–717.

    CAS  Google Scholar 

  • Koburger, J. A., and Miller, M. L. 1985. Evaluation of a fluorogenic MPN procedure for determining Escherichia coli in oysters. J. Food Prot. 48: 244–245.

    Google Scholar 

  • LeChevallier, M. W.; Jakanoski, P. E.; Camper, A. K.; and McFeters, G. A. 1984. Evaluation of m-T7 agar as a fecal coliform medium. Appi. Environ. Microbiol. 48: 371–375.

    CAS  Google Scholar 

  • Lee, W. 1972. Improved procedure for the identification of group D enterococci with two new media. Appi. Microbiol. 24: 1–3.

    CAS  Google Scholar 

  • Loken, K. I.; Culbert, K. H.; Solee, R. E.; and Pomeroy, B. S. 1968. Microbiological quality of protein feed supplements produced by rendering plants. Appi. Microbiol. 16: 1002–1005.

    CAS  Google Scholar 

  • Lovell, R. T., and Barkate, J.A. 1969. Incidence and growth of some health-related bacteria in commercial freshwater crayfish (genus Procambarus). J. Food Sci. 34: 268–271.

    Article  Google Scholar 

  • Mara, D. D., and Oragui, J. I. 1983. Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution./ Appi. Bacteriol. 55: 349–357.

    Article  CAS  Google Scholar 

  • Marcus, K. A., and Amling, H.J. 1973. Escherichia coli field contamination of pecan nuts. Appl. Microbiol. 26: 279–281.

    CAS  Google Scholar 

  • Mason, T. G., and Richardson, G. 1981. Escherichia coli and the human gut: Some ecological considerations./ Appl. Bacteriol. 51: 1–16.

    CAS  Google Scholar 

  • Menon, A. S. 1985. Salmonellae and pollution indicator bacteria in municipal and food processing effluents and the Cornwallis River. Can. J. Microbiol. 31: 598–603.

    Article  CAS  Google Scholar 

  • Mercuri, A.J.; Cox, N. A.; Carson, M. O.; and Tanner, D. A. 1978. Relation of Enterobacteriaceae counts to Salmonella contamination of market broilers./ Food Prot. 41: 427–428.

    Google Scholar 

  • Mitchell, D. O., and Starzyk, M.J. 1975. Survival of Salmonella and other indicator microorganisms. Can J. Microbiol. 21: 1420–1421.

    Article  CAS  Google Scholar 

  • Mossel, D. A. A. 1967. Ecological principles and methodological aspects of the examination of foods and feeds for indicator microorganisms. J. Assoc. Offic. Anal. Chem. 50: 91–104.

    Google Scholar 

  • Mossel, D. A. A. 1982. Marker (index and indicator) organisms in food and drinking water. Semantics, ecology, taxonomy and enumeration. Antonie van Leeuwenhoek 48: 609–611.

    Article  Google Scholar 

  • Motes, M. L., Jr.; McPhearson, R. M., Jr.; and DePaola, A., Jr. 1984. Comparison of three international methods with APHA method for enumeration of Escherichia coli in estuarine waters and shellfish./ Food Prot. 47: 557–561.

    Google Scholar 

  • Mundt, J. O. 1973. Litmus milk reaction as a distinguishing feature between Streptococcus faecalis of human and non-human origins./ Milk Food Technol. 36: 364–367.

    Google Scholar 

  • Mundt, J. O. 1982. The ecology of the streptococci. Microb. Ecol. 8: 355–369.

    Article  Google Scholar 

  • Nelson, C. L.; Fox, T. L.; and Busta, F. F. 1984. Evaluation of dry medium (petrifilm VRB) for coliform.numeration. J. Food Prot. 47: 520–525.

    Google Scholar 

  • Newman, J. S., and O’Brien, R. T. 1975. Gas chromatographic presumptive test for coliform bacteria in water. Appl. Microbiol. 30: 584–588.

    CAS  Google Scholar 

  • Oblinger, J. L.; Kennedy, J. E., Jr.; and Langston, D. M. 1982. Microflora recovered from foods on violet red bile agar with and without glucose and incubated at different temperatures. J. Food Prot. 45: 948–952.

    Google Scholar 

  • Pagel, J. E., and Hardy, G. M. 1980. Comparison of selective media for the enumeration and identification of fecal streptococci from natural sources. Can. J. Microbiol. 26: 1320–1327.

    Article  CAS  Google Scholar 

  • Petzel, J. P., and Hartman, P. A. 1985. Monensin-based medium for determination of total Gram-negative bacteria and Escherichia coli. Appl. Environ. Microbiol. 49: 925–933.

    CAS  Google Scholar 

  • Ray, B., and Speck, M. L. 1978. Plating procedure for the enumeration of coliforms from dairy products. Appi. Environ. Microbiol. 35: 820–822.

    CAS  Google Scholar 

  • Reber, C. L., and Marshall, R. T. 1982. Comparison of VRB and VRB-2 agars for recovery of stressed coliforms from stored acidified half-and-half./ Food Prot. 45: 584–585.

    Google Scholar 

  • Resnick, I. G., and Levin, M. A. 1981. Assessment of bifidobacteria as indicators of human fecal pollution. Appl. Environ. Microbiol. 42: 433–438.

    CAS  Google Scholar 

  • Richards, G. P. 1979. Evaluation of Millipore coli-count samplers for monitoring fecal coliforms in the blue crab, Callinectes sapidus. Appi. Environ. Microbiol. 38: 341–343.

    CAS  Google Scholar 

  • Robison, B. J. 1984. Evaluation of a fluorogenic assay for detection of Escherichia coli in foods. Appi. Environ. Microbiol. 48: 285–288.

    CAS  Google Scholar 

  • Schleifer, K. H., and Kilpper-Bälz, R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Bacteriol. 34: 31–34.

    Article  Google Scholar 

  • Shannon, E. L.; Clark, W. S., Jr.; and Reinbold, G. W. 1965. Chlorine resistance of enterococci. J. Milk Food Technol. 28: 120–123.

    CAS  Google Scholar 

  • Sharpe, A. N.; Rayman, M. K.; Burgener, D. M.; Conley, D.; Loit, A.; Milling, M.; Peterkin, P. I.; Purvis, U.; and Malcolm, S. 1983. Collaborative study of the MPN, Anderson-BairdParker direct plating, and hydrophobic grid-membrane filter methods for the enumeration of Escherichia coli biotype 1 in foods. Can. J. Microbiol. 29: 1247–1252.

    Article  CAS  Google Scholar 

  • Shaw, B. G., and Roberts, T. A. 1982. Indicator organisms in raw meats. Antonie van Leeuwenhoek 48: 612–613.

    Article  Google Scholar 

  • Silliker, J. H. 1982. Selecting methodology to meet industry’s microbiological goals for the 1980s. Food Technol. 36 (12): 65–70.

    Google Scholar 

  • Silverman, M. P., and Munoz, E. F. 1979. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants. Appi. Environ. Microbiol. 37: 521–526.

    CAS  Google Scholar 

  • Smith, M.R. 1971. Vibrio parahemolyticus. Clin. Med. 78: 22–25.

    Google Scholar 

  • Solberg, M., et al. 1976. What do microbiological indicator tests tell us about the safety of foods? Food Product Development 10 (9): 72–80.

    Google Scholar 

  • Splittstoesser, D. F.; Bowers, J.; Kerschner, L.; and Wilkison, M. 1980. Detection and incidence of Geotrichum candidum in frozen blanched vegetables. J. Food Sci. 45: 511–513.

    Article  Google Scholar 

  • Splittstoesser, D. F.; Stewart, J. D.; and Wilkison, M. 1982. Survival of fecal coliforms in frozen vegetable homogenates. J Food Prot. 45: 1041–1043.

    Google Scholar 

  • Stadhouders, J.; Hup, G.; and Hassing, E 1982. The conceptions index and indicator organisms discussed on the basis of the bacteriology of spray-dried milk powder. Neth. Milk Dairy J. 36: 231–260.

    Google Scholar 

  • Standridge, J. H., and Delfino, J. J. 1981. A-1 medium: Alternative technique for fecal coliform organism enumeration in chlorinated wastewaters. Appl. Environ. Microbiol. 42: 918–920.

    CAS  Google Scholar 

  • Steller, R. E. 1984. Coliphages as indicators of enteroviruses. Appl. Environ. Microbiol. 48: 668–670.

    Google Scholar 

  • Stiles, M. E., and Ng, L. 1981. Biochemical characteristics and identification of Enterobacteriaceae isolated from meats. Appl. Environ. Microbiol. 41: 639–645.

    CAS  Google Scholar 

  • Strauss, W. M.; Malaney, G. W.; and Tanner, R. D. 1984. The impedance method for monitoring total coliforms in wastewaters. Part I. Background and Methodology. Folio Microbiol. 29: 162–169.

    Article  CAS  Google Scholar 

  • Surkiewicz, B. F.; Harris, M. E.; Elliot, R. P.; Macaluso, J. E; and Strand, M. M. 1975. Bacteriological survey of raw beef patties produced at establishments under federal inspection. Appl. Microbiol. 29: 331–334.

    CAS  Google Scholar 

  • Tenpenney, J. R.; Tanner, R. D.; and Malaney, G. W. 1984. The impedance method for monitoring total coliforms in wastewaters. Part II. Results and evaluation. Folic Microbiol. 29: 170–180.

    Article  Google Scholar 

  • Tompkin, R. B. 1983. Indicator organisms in meat and poultry products. Food Technol. 37 (6): 107–110.

    Google Scholar 

  • Varga, S., and Doucet, A. 1984. Quantitative estimation of fecal coliforms in fresh and frozen fishery products by APHA and modified A-1 procedures. J. Food Prot. 47: 60 2603.

    Google Scholar 

  • Wait, D. A.; Hackney, C. R.; Carrick, R. J.; Lovelace, G.; and Sobsey, M. D. 1983. Enteric bacterial and viral pathogens and indicator bacteria in hard shell clams. J Food Prot. 46: 493–496.

    Google Scholar 

  • Wentsel, R. S.; O’Neill, P. E.; and Kitchens, J. F. 1982. Evaluation of coliphage detection as a rapid indicator of water quality. Appi. Environ. Microbiol. 43: 430–434.

    Google Scholar 

  • Wright, R. C. 1984. A new selective and differential agar medium for Escherichia coli and coliform organisms.,. Appt. Bacteriol. 56: 381–388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Van Nostrand Reinhold

About this chapter

Cite this chapter

Banwart, G.J. (1989). Indicator Organisms. In: Basic Food Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6453-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6453-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6455-9

  • Online ISBN: 978-1-4684-6453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics