Skip to main content

Abstract

The pol open reading frame (ORF) of the human immunodeficiency virus (HIV-1) encodes three distinct enzymes, one of which is an aspartic proteinase (PR). Point mutations introduced at the active site of this enzyme result in an inability to form infectious virions1 thus emphasizing the paramount importance of PR in viral maturation. Proteinase has thus become a strategic target for the development of compounds that might have therapeutic value in the treatment of AIDS.2 By preference, such compounds should be specific for the target, HIV-PR and should not have side effects by interacting with similar enzymes present in the human body, such as have been observed for example with anti-viral agents (e.g. AZT that act against reverse transcriptase RT). The design of specific PR inhibitors is facilitated considerably by a detailed understanding of the molecular topography of the PR active site. To this end, several series of synthetic chromogenic substrates have been used to unravel the subsite preferences of this important enzyme. In some cases, the requirement for certain residues to be present in particular locations in native protein substrates in order to ensure effective hydrolysis by PR has also been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. E. Kohi, E. A. Emini, W. A. Schleif, L. J. Davis, J. C. Heimbach, R. A. F. Dixon, E. M. Scolnick and I. S. Sigal, Proc. Natl. Acad. Sci. U.S.A. 85: 4686–4690 (1988).

    Article  Google Scholar 

  2. N. A. Roberts, J. A. Martin, D. Kinchington, A. V. Broadhurst, J. C. Craig, I. B. Duncan, S. A. Galpin, B. K. Handa, J. Kay, A. Krohn, R. W. Lambert, J. H. Merrett, J. S. Mills, K. E. B. Parkes, S. Redshaw, A. J. Ritchie, D. L. Taylor, G. J. Thomas and P. J. Machin, Science 248: 358–361 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. B. M. Dunn, M. Jimenez, B. F. Parten, M. J. Valier, C. E. Rolph and J. Kay, Biochem. J. 237: 899–906 (1986).

    PubMed  CAS  Google Scholar 

  4. B. M. Dunn, M. J. Valier, C. E. Rolph, S. I. Foundling, M. Jimenez and J. Kay, Biochim. Biophys. Acta 913: 122–130 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. A. D. Richards, L. H. Phylip, W. G. Farmerie, P. E. Scarborough, A. Alvarez, B. M. Dunn, Ph.-H. Hirel, J. Konvalinka, P. Strop, L. Pavlickova, V. Kostka and J. Kay, J. Biol. Chem. 265: 7733–7736 (1990).

    PubMed  CAS  Google Scholar 

  6. J. Konvalinka, P. Strop, J. Velek, V. Cerna, V. Kostka, L. H. Phylip, A. D. Richards, B. M. Dunn and J. Kay, FEBS Lett. 268: 35–38 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. L. Ratner, W. A. Haseltine, R. Patarca, K. J. Livak, B. Starcich, S. F. Josephs, E. R. Doran, J. A. Rafalski, E. A. Whitehorn, K. Baumeister, L. Ivanoff, S. R. Petteway Jr., M. L. Pearson, J. A. Lautenberger, T. S. Papas, J. Ghrayeb, N. T. Chang, R. C. Gallo and F. C. Wong-Staal, Nature 313: 277–284 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. L. H. Phylip, A. D. Richards, J. Kay, J. Konvalinka, P. Strop, V. Kostka, A. J. Ritchie, A. V. Broadhurst, W. G. Farmerie, P. E. Scarborough and B. M. Dunn, Biochem. Biophys. Res. Commun. 171: 439–444 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. R. A. Jupp, L. H. Phylip. J. S. Mills, S. F. J. LeGrice and J. Kay, FEBS Letts. 283: 180–184 (1991).

    Article  CAS  Google Scholar 

  10. L. H. Phylip, J. T. Griffiths, J. Konvalinka, P. Strop, A. M. Gustchina, A. Wlodawer, R. J. Davenport, B. M. Dunn and J. Kay, (1991) Manuscript in submission.

    Google Scholar 

  11. U.M. Miller, B. Y. Sathyanaryana, A. Wlodawer, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, J. Schneider and S. B. H. Kent, Science 246: 1149–1152 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. P. M. D. Fitzgerald, B. M. McKeever, J. F. van Middlesworth, J. P. Springer, J. L. Heimbach, C-T. Leu, W. K. Herber, R. A. F. Dixon and P. L. Darke, J. Biol. Chem. 256: 1420–14219 (1990).

    Google Scholar 

  13. L. H. Pearl, FEBS Lett. 2148–12 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Jupp, R.A. et al. (1991). Substrate Cleavage by HIV-1 Proteinase. In: Dunn, B.M. (eds) Structure and Function of the Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 306. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6012-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6012-4_59

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6014-8

  • Online ISBN: 978-1-4684-6012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics