Human Immunodeficiency Virus Proteinase: Now, Then, What’s Next?

  • Mary C. Graves
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


“Art is I; science is we.” Claude Bernard (1813-1878) Unlike in art, progress in the field of science comes as a result of the efforts of many people: “we” scientists. It emerges through the accumulation of work in countless laboratories, from those working for years on basic model systems, reaching all the way to those studying applied aspects of a specific system. This interdependent continuum of basic and applied aspects is exemplified in the evolving story of the human immunodeficiency virus protease (HIV PR).


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Aspartic Proteinase Human Immunodeficiency Virus Protease Pseudomonas Exotoxin56 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Dickson, R. Eisenman, H. Fan, E. Hunter and N. Teich, Protein biosynthesis and assembly, in: “RNA Tumor Viruses,” R. Weiss, N. Teich, H. Varmus and J. Coffin, eds., 2nd Ed., Cold Spring Harbor Lab., Cold Spring Harbor, NY (1984).Google Scholar
  2. 2.
    A. M. Skalka, Retroviral proteases: first glimpses at the anatomy of a processing machine, Cell 56: 911 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Ratner, W. Haseltine, R. Patarca, K. J. Livak, B. Starcich, S. F. Josephs, E. R. Doran, J. A. Rafalski, E. A. Whitehorn, K. Baumeister, L. Ivanoff, S. R. Petteway Jr, M. L. Pearson, J. A. Lautenberger, T. S. Papas, J. Ghrayeb, N. T. Chang, R. C. Gallo and F. Wong-Staal, Complete nucleotide sequence of the AIDS virus, HTLV-III, Nature 313: 277 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Toh, M. Ono, K. Saigo and T. Miyata, Retroviral protease-like sequence in the yeast transposon TY 1, Nature 315: 691 (1985).CrossRefGoogle Scholar
  5. 5.
    R. Sanchez-Pescador, M. D. Power, P. J. Barr, K. S. Steimer, M. M. Stempien, S. L. Brown-Shimer, W. W. Gee, A. Renard, A. Randolph, J. A. Levy, D. Dina and P. A. Luciw, Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2), Science 227: 484 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Wain-Hobson, P. Sonigo, O. Danos, S. Cole and M. Alizon, Nucleotide sequence of the AIDS virus, LAV, Cell 40: 9 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Leis, D. Baltimore, J. M. Bishop, J. Coffin, E. Fleissner, S. P. Goff, S. Oroszlan, H. Robinson, A. M. Skalka, H. M. Temin and V. Vogt, Standardized and simplified nomenclature for proteins common to all retroviruses, J. Virol. 62: 1808 (1988).PubMedGoogle Scholar
  8. 8.
    F. M. Veronese, T. D. Copeland, A. L. DeVico, R. Rahman, S. Oroszlan, R. C. Gallo and M. G. Sarngadharan, Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV, Science 231: 1289 (1986).CrossRefGoogle Scholar
  9. 9.
    M. M. Lightfoote, J. E. Coligan, T. M. Folks, A. S. Fauci, M. A. Martin and S. Venkatesan, Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus, J. Virol. 60: 771 (1986).PubMedGoogle Scholar
  10. 10.
    R. A. Kramer, M. D. Schaber, A. M. Skalka, K. Ganguly, F. Wong-Staal and E. P. Reddy, HTLV-III gag protein is processed in yeast cells by the virus pol-protease, Science 231: 1580 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    U.C. Debouck, J. G. Gorniak, J. E. Strickler, T. D. Meek, B. W. Metcalf and M. Rosenberg, Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor, Proc. Natl. Acad. Sci. U.S.A. 84: 8903 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    M. C. Graves, J. J. Lim, E. P. Heimer and R. A. Kramer, An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity, Proc. Natl. Acad. Sci. U.S.A. 85: 2449 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Mous, E. P. Heimer and S. F. J. Le Grice, Processing protease and reverse transcriptase from human immunodeficiency virus type I polyprotein in Escherichia coli, J. Virol. 62: 1433 (1988).PubMedGoogle Scholar
  14. 14.
    E. P. Lillehoj, F. H. R. Salazar, R. J. Mervis, M. G. Raum, H. W. Chan, N. Ahmad and S. Venkatesan, Purification and structural characterization of the putative gag-pol protease of human immunodeficiency virus, J. Virol. 62: 3053 (1988).PubMedGoogle Scholar
  15. 15.
    H.-G. Kräusslich, H. Schneider, G. Zybarth, C. A. Carter and E. Wimmer, Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli, J. Virol. 62: 4393 (1988).PubMedGoogle Scholar
  16. 16.
    C.-Z. Giam and I. Boros, In vivo and in vitro autoprocessing of human immunodeficiency virus protease expressed in Escherichia coli, J. Biol. Chem. 263: 14617 (1988).PubMedGoogle Scholar
  17. 17.
    J. Hansen, S. Billich, T. Schulze, S. Sukrow and K. Moelling, Partial purification and substrate analysis of bacterially expressed HIV protease by means of monoclonal antibody, EMBO J. 7: 1785 (1988).PubMedGoogle Scholar
  18. 18.
    N. E. Kohl, E. A. Emini, W. A. Schleif, L. J. Davis, J. C. Heimbach, R. A. F. Dixon, E. M. Scolnick and I. S. Sigal, Active human immunodeficiency virus protease is required for viral infectivity, Proc. Natl. Acad. Sci. U.S.A. 85: 4686 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Peng, B. K. Ho, T. W. Chang and N. T. Chang, Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity, J. Virol. 63: 2550 (1989).PubMedGoogle Scholar
  20. 20.
    L. E. Henderson, T. D. Copeland, R. C. Sowder, A. M. Schultz and S. Oroszlan, Analysis of proteins and peptides purified from sucrose gradient banded HTLV-III, in: “Human retroviruses, cancer, and AIDS: approaches to prevention and therapy,” D. Bolognesi, ed., Alan R. Liss, Inc., New York (1988).Google Scholar
  21. 21.
    L. E. Henderson, R. E. Benveniste, R. Sowder, T. D. Copeland, A. M. Schultz and S. Oroszlan, Molecular characterization of gag proteins from simian immunodeficiency virus (SIVMne), J. Virol. 62: 2587 (1988).PubMedGoogle Scholar
  22. 22.
    M. C. Graves, J. J. Lim, M. A. Zicopoulos, T. J. Stoller, M. C. Miedel, Y.-C. E. Pan, W. Danho and C. M. Nalin, Expression and characterization of human immunodeficiency virus-1 protease, in: “Proteases of Retroviruses,” V. Kostka, ed., Walter de Gruyter & Co., Berlin (1989).Google Scholar
  23. 23.
    H.-G. Kräusslich, R. H. Ingraham, M. T. Skoog, E. Wimmer, P. V. Pallai and C. A. Carter, Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides, Proc. Natl. Acad. Sci. U.S.A. 86: 807 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    M. C. Graves, M. C. Meidel, Y.-C. E. Pan, M. Manneberg, H.-W. Lahm and F. Grüninger-Leitch, Identification of a human immunodeficiency virus-1 protease cleavage site within the 66,000 dalton subunit of reverse transcriptase, Biochem. Biophys. Res. Comm. 168: 30 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Kay and B. M. Dunn, Viral proteinases: weakness in strength, Biochim. Biophys. Acta 1048: 1 (1990).PubMedGoogle Scholar
  26. 26.
    L. H. Pearl and W. R. Taylor, A structural model for the retroviral proteases, Nature 329: 351 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    M. A. Navia, P. M. D. Fitzgerald, B. M. McKeever, C.-T. Leu, J. C. Heimbach, W. K. Herber, I. S. Sigal, P. L. Darke and J. P. Springer, Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1, Nature 337: 615 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Wlodawer, M. Miller, M. Jaskólski, B. K. Sathyanarayana, E. Baldwin, I. T. Weber, L. M. Selk, L. Clawson, J. Schneider and S. B. H. Kent, Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease, Science 245: 616 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Lapatto, T. Blundell, A. Hemmings, J. Overington, A. Wilderspin, S. Wood, J. R. Merson, P. J. Whittle, D. E. Danley, K. F. Geoghegan, S. J. Hawrylik, S. E. Lee, K. G. Scheid and P. M. Hobart, X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes, Nature 342: 299 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Seelmeier, H. Schmidt, V. Turk and K. von der Helm, Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A, Proc. Natl. Acad. Sci. U.S.A. 85: 6612 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    S. F. J. Le Grice, J. Mills and J. Mous, Active site mutagenesis of the AIDS virus protease and its alleviation by trans complementation, EMBO J. 7: 2547 (1988).PubMedGoogle Scholar
  32. 32.
    D. D. Loeb, C. A. Hutchison III, M. H. Edgell, W. G. Farmerie and R. Swanstrom, Mutational analysis of human immunodeficiency virus type 1 protease suggests functional homology with aspartic proteinases, J. Virol. 63: 111 (1989).PubMedGoogle Scholar
  33. 33.
    P. L. Darke, C.-T. Leu, L. J. Davis, J. C. Heimbach, R. E. Diehl, W. S. Hill, R. A. F. Dixon and I. S. Sigal, Human immunodeficiency virus protease: bacterial expression and characterization of the purified aspartic protease, J. Biol. Chem. 264: 2307 (1989).PubMedGoogle Scholar
  34. 34.
    A. D. Richards, R. Roberts, B. M. Dunn, M. C. Graves and J. Kay, Effective blocking of HIV-1 proteinase activity by characteristic inhibitors of aspartic proteinases, FEBS Lett. 247: 113 (1989).PubMedCrossRefGoogle Scholar
  35. 35.
    J. E. Strickler, J. Gorniak, B. Dayton, T. Meek, M. Moore, V. Magaard, J. Malinowski and C. Debouck, Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli, Proteins 6: 139 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    A. G. Tomasselli, M. K. Olsen, J. O. Hui, DJ. Staples, T. K. Sawyer, R. L. Heinrikson and C.-S. C. Tomich, Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease, Biochemistry 29: 264 (1990).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Rittenhouse, M. C. Turon, R. J. Helfrich, K. S. Albrecht, D. Weigl, R. L. Simmer, F. Mordini, J. Erickson and W. E. Kohnbrenner, Affinity purification of HIV-1 and HIV-2 proteases from recombinant E. coli strains using pepstatin-agarose, Biochem. Biophys. Res. Comm. 171: 60 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    T. D. Meek, B. D. Dayton, B. W. Metcalf, G. B. Dreyer, J. E. Strickler, J. G. Gorniak, M. Rosenberg, M. L. Moore, V. W. Magaard and C. Debouck, Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease, Proc. Natl. Acad. Sci. U.S.A. 86: 1841 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    A. D. Richards, L. H. Phylip, W. G. Farmerie, P. E. Scarborough, A. Alvarez, B. M. Dunn, Ph.-H. Hirel, J. Konvalinka, P. Strop, L. Pavlickova, V. Kostka and J. Kay, Sensitive, soluble chromogenic substrates for HIV-1 proteinase, J. Biol. Chem. 265: 7733 (1990).PubMedGoogle Scholar
  40. 40.
    R. L. Shoeman, B. Höner, T. J. Stoller, C. Kesselmeier, M. C. Miedel, P. Traub and M. C. Graves, Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin and glial fibrillary acidic protein, Proc. Natl. Acad. Sci. U.S.A. 87: 6336 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Konvalinka, P. Strop, J. Velek, V. Cerna, V. Kostka, L. H. Phylip, A. D. Richards, B. M. Dunn and J. Kay, Sub-site preferences of the aspartic proteinase from the human immunodeficiency virus, HIV-1, FEBS Lett. 268: 35 (1990).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Billich, M.-T. Knoop, J. Hansen, P. Strop, J. Sedlacek, R. Mertz and K. Moelling, Synthetic peptides as substrates and inhibitors of human immune deficiency virus-1 protease, J. Biol. Chem. 263: 17905 (1988).PubMedGoogle Scholar
  43. 43.
    J. Schneider and S. B. H. Kent, Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease, Cell 54: 363 (1988).PubMedCrossRefGoogle Scholar
  44. 44.
    R. F. Nutt, S. F. Brady, P. L. Darke, T. M. Ciccarone, C. D. Colton, E. M. Nutt, J. A. Rodkey, C. D. Bennett, L. H. Waxman, I. S. Sigal, P. S. Anderson and D. F. Veber, Chemical synthesis and enzymatic activity of a 99-residue peptide with a sequence proposed for the human immunodeficiency virus protease, Proc. Natl. Acad. Sci. U.S.A. 85: 7129 (1988).PubMedCrossRefGoogle Scholar
  45. 45.
    D. D. Loeb, R. Swanstrom, L. Everitt, M. Manchester, S. E. Stamper and C. A. Hutchison III, Complete mutagenesis of the HIV-1 protease, Nature 340: 397 (1989).PubMedCrossRefGoogle Scholar
  46. 46.
    J. Erickson, D. J. Neidhart, J. VanDrie, D. J. Kempf, X. C. Wang, D. W. Norbeck, J. J. Plattner, J. W. Rittenhouse, M. Turon, N. Wideburg, W. E. Kohlbrenner, R. Simmer, R. Helfrich, D. A. Paul and M. Knigge, Design, activity, and 2.8 Å crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease, Science 249: 527 (1990).PubMedCrossRefGoogle Scholar
  47. 47.
    G. B. Dreyer, B. W. Metcalf, T. A. Tomaszek, Jr., T. J. Carr, A. C. Chandler, III, L. Hyland, S. A. Fakhoury, V. W. Magaard, M. L. Moore, J. E. Strickler, C. Debouck and T. D. Meek, Inhibition of human immunodeficiency virus 1 protease in vitro: rational design of substrate analogue inhibitors, Proc. Natl. Acad. Sci. U.S.A. 86: 9752 (1989).PubMedCrossRefGoogle Scholar
  48. 48.
    T. J. McQuade, A. G. Tomasselli, L. Liu, V. Karacostas, B. Moss, T. K. Sawyer, R. L. Heinrikson and W. G. Tarpley, A synthetic HIV-1 protease inhibitor with antiviral activity arrests HIV-like particle maturation, Science 247: 454 (1990).PubMedCrossRefGoogle Scholar
  49. 49.
    N. A. Roberts, J. A. Martin, D. Kinchington, A. V. Broadhurst, J. C. Craig, I. B. Duncan, S. A. Galpin, B. K. Handa, J. Kay, A. Kröhn, R. W. Lambert, J. H. Merrett, J. S. Mills, K. E. B. Parkes, S. Redshaw, A. J. Ritchie, D. L. Taylor, G. J. Thomas and P. J. Machin, Rational design of peptide-based HIV proteinase inhibitors, Science 248: 358 (1990).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Miller, J. Schneider, B. K. Sathyanarayana, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, S. B. H. Kent and A. Wlodawer, Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Å resolution, Science 246: 1149 (1989).PubMedCrossRefGoogle Scholar
  51. 51.
    A. L. Swain, M. M. Miller, J. Green, D. H. Rich, J. Schneider, S. B. H. Kent and A. Wlodawer, X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor, Proc. Nat. Acad. Sci., U.S.A. 87: 8805 (1990).CrossRefGoogle Scholar
  52. 52.
    P. M. D. Fitzgerald, B. M. McKeever, J. F. VanMiddlesworth, J. P. Springer, J. C. Heimbach, C.-T. Leu, W. K. Herber, R. A. F. Dixon and P. L. Darke, Crystallographic analysis of a complex between HIV-1 protease and acetyl-pepstatin at 2.0 Å resolution, J. Biol. Chem. 265: 14209 (1990).PubMedGoogle Scholar
  53. 53.
    S. Erickson-Viitanen, J. Manfredi, P. Viitanen, D. E. Tribe, R. Tritch, C. A. Hutchison III, D. D. Loeb and R. Swanstrom, Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease, AIDS Res. Human Retroviruses 5: 577 (1989).CrossRefGoogle Scholar
  54. 54.
    K. Partin, H.-G. Kräusslich, L. Ehrlich, E. Wimmer and C. Carter, Mutational analysis of a native substrate of the human immunodeficiency virus type 1 proteinase, J. Virol. 64: 3938 (1990).PubMedGoogle Scholar
  55. 55.
    P. L. Darke, R. F. Nutt, S. F. Brady, V. M. Garsky, T. M. Ciccarone, C.-T. Leu, P. K. Lumma, R. M. Freidinger, D. F. Veber and I. S. Sigal, HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins, Biochem. Biophys. Res. Comm. 156: 297 (1988).PubMedCrossRefGoogle Scholar
  56. 56.
    A. G. Tomasselli, J. O. Hui, T. K. Sawyer, D. J. Staples, D. J. Fitz Gerald, V. K. Chaudhary, I. Pastan and R. L. Heinrikson, Interdomain hydrolysis of a truncated Pseudomonas exotoxin by the human immunodeficiency virus-1 protease, J. Biol. Chem. 265: 408 (1990).PubMedGoogle Scholar
  57. 57.
    N. Margolin, W. Heath, E. Osborne, M. Lai and C. Vlahos, Substitutions at the P2′ site of gag pl7/p24 affect cleavage efficiency by HIV-1 protease, Biochem. Biophys. Res. Comm. 167: 554 (1990).PubMedCrossRefGoogle Scholar
  58. 58.
    S. F. J. Le Grice, R. Ette, J. Mills and J. Mous, Comparison of the human immunodeficiency virus type 1 and 2 proteases by hybrid gene construction and trans-complementation, J. Biol. Chem. 264: 14902 (1989).PubMedGoogle Scholar
  59. 59.
    R. L. Des Jarlais, G. L. Seibel, I. D. Kuntz, P. S. Furth, J. C. Alvarez, R. R. O. de Montellano, D. L. DeCamp, L. M. Babé and C. S. Craik, Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease, Proc. Natl. Acad. Sci. U.S.A. 87: 6644 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Mary C. Graves
    • 1
  1. 1.Department of Molecular Genetics, Roche Research CenterHoffmann-La Roche IncNutleyUSA

Personalised recommendations