Advertisement

Introduction to Fungal Proteinases and Expression in Fungal Systems

  • Michael Ward
  • Katherine H. Kodama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

Aspartic proteinase production is widespread among the fungi and examples of both secretion and localization in subcellular organelles are known. For example, the yeast Saccharomyces cerevisiae produces aspartic proteinases which reside in the vacuole (proteinase A, analagous to mammalian cathepsin D, Ammerer et al., 1986; Woolford et al., 1986) and within the secretory apparatus (product of the YAP3 gene, Egel-Mitani et al., 1990). It is likely that other fungi produce equivalent proteinases. In addition, yeasts secrete aspartic proteinases such as the barrier proteinase of S. cerevisiae (MacKay et al., 1988; this volume) and the PEPI proteinase of Saccharomycopsis fibuligera (Hirata et al., 1988). The genes for all these proteinases have been cloned and DNA sequences determined from which the amino acid sequences have been derived. Many filamentous fungi are also known to secrete aspartic proteinases and these, as well as secretion of heterologous aspartic proteinase by these fungi, will be the major focus of this chapter.

Keywords

Aspartic Proteinase Shake Flask Culture Aspergillus Oryzae Secretion Signal Peptide Mucor Circinelloides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikawa, J., Yamashita, T., Nishiyama, M., Horinouchi, S. & Beppu, T., 1990, J. Biol. Chem., 265: 13955–13959.PubMedGoogle Scholar
  2. Ammerer, G., Hunter, C. P., Rothman, J. H., Saari, G. C., Vallis, L. A. & Stevens, T. H., 1986, Mol. Cell Biol., 6: 2490–2499.PubMedGoogle Scholar
  3. Andreeva, N. S., Zdanov, A. S., Gustchina, A. E. & Federov, A. A., 1984, J. Biol Chem., 259: 11353–11365.PubMedGoogle Scholar
  4. Ashikari, T., Amachi, T., Yoshizumi, H., Horiuchi, H., Takagi, M. & Yano, K., 1990, Mol Gen. Genet., 223: 11–16.PubMedCrossRefGoogle Scholar
  5. Barkholt, V., 1987, Eur. J. Biochem., 167: 327–338.PubMedCrossRefGoogle Scholar
  6. Baudys, M., Foundling, S., Pavlík, M., Blundell, T. & Kostka, V., 1988, FEBS Lett., 235: 271–274.PubMedCrossRefGoogle Scholar
  7. Bech, A.-M. & Foltmann, B., 1981, Neth. Milk Dairy J., 35: 275–280.Google Scholar
  8. Berka, R. M., Ward, M., Wilson, L. J., Hayenga, K. J., Kodama, K. H., Carlomagno, L. P. & Thompson, S.A., 1990, Gene, 86: 153–162.PubMedCrossRefGoogle Scholar
  9. Blundell, T., Jenkins, J., Pearl, L., Sewell, T. & Pedersen, V., 1985, in: Aspartic Proteinases and their Inhibitors (Kostka, V., ed.). pp. 151–161. Walter de Gruyter, Berlin.Google Scholar
  10. Boel, E., Christensen, T. & Wöldike, H., 1987, European Patent Application, Publication number 0 238 023Google Scholar
  11. Bott, R., Subramanian, E. and Davies, D. R., 1982, Biochemistry, 21: 6956–6962.PubMedCrossRefGoogle Scholar
  12. Chen, Z., Han, H. P., Wang, X. J., Koelsch, G., Lin, X. Y., Hartsuck, J. A. & Tang, J., 1991, Manuscript in preparation.Google Scholar
  13. Christensen, T., Wöldike, H., Boel, E., Mortensen, S. B., Hjortshoej, K., Thim, L. & Hansen, M. T., 1988, Bioltechnology, 6: 1419–1422.CrossRefGoogle Scholar
  14. Cunningham, A., Wang, H.-M, Jones, S. R., Kurosky, A., Rao, L., Harris, C. L, Rhee, S. H. & Hoffmann, T., 1976, Can. J. Biochem., 54: 902–914.PubMedCrossRefGoogle Scholar
  15. Delaney, R., Wong, R. N. S., Meng, G., Wu, N. & Tang, J., 1987, J. Biol. Chem. 262: 1461–1467PubMedGoogle Scholar
  16. Dickinson, L., Harboe, M., van Heeswijk, R., Strøman, P. & Jepsen, L. P., 1987, Carlsberg Res. Commun., 52: 243–252.CrossRefGoogle Scholar
  17. Egel-Mitani, M., Flygenring, H. P. & Hansen, M. T., 1990, Yeast, 6: 127–137.PubMedCrossRefGoogle Scholar
  18. Emtage, J. S., Angal, S., Doel, M. T., Harris, T. J. R., Jemkins, B., Lilley, G. & Lowe, P. A., 1983, Proc. Natl Acad. Sci. USA, 80: 3671–3675.PubMedCrossRefGoogle Scholar
  19. Foltmann, B., 1986, in: Molecular and Cellular Basis of Digestion (Desnuelle, P., Sjostrom, H. & Noren, O., eds.). pp. 491–505.Google Scholar
  20. Foltmann, B., 1988, Biol. Chem. Hoppe-Seyler, 369: 311–314PubMedGoogle Scholar
  21. Franke, A. E., Kaczmarek, F. S., Eisenhard, M. E., Geoghegan, K. F., Danley, D. E., De Zeeuw, J. R., O’Donnell, M. M., Gollaher, M. G. Jr. & Davidow, L. S., 1988, in: Developments in Industrial Microbiology, Vol. 29 (Pierce, G., ed.). pp. 43–57. Society for Industrial Microbiology, Arlington.Google Scholar
  22. Gilliland, G. L., Winbome, E. L., Nachman, J. & Wlodower, A.., 1990, Proteins, 8: 82–101.PubMedCrossRefGoogle Scholar
  23. Goff, C. G., Moir, D. T., Kohno, T., Gravius, T. C., Smith, R. A., Yamasaki, E. & Taunton-Rigby, A., 1984, Gene, 27: 35–46.PubMedCrossRefGoogle Scholar
  24. Gray, G. L., Hayenga, K., Cullen, D., Wilson, L. J. & Norton, S., 1986, Gene, 48: 41–53.PubMedCrossRefGoogle Scholar
  25. Harrki, A., Uusitalo, J., Bailey, M., Penttil, M. & Knowles, J. K. C., 1989, Bio/technology, 7: 596–603.CrossRefGoogle Scholar
  26. Hiramatsu, R., Aikawa, J., Horinouchi, S. & Beppu, T., 1989, J. Biol Chem., 264: 16862–16866.PubMedGoogle Scholar
  27. Hirata, D., Fukui, S. & Yamashita, I., 1988, Agric. Biol. Chem., 52: 2647–2649.CrossRefGoogle Scholar
  28. Horiuchi, H., Yanai, K., Okazaki, T., Takagi, M. & Yano, K., 1988, J. Bacteriol., 170: 272–278.PubMedGoogle Scholar
  29. Horiuchi, H., Ashikari, T., Amachi, T., Yoshizumi, H., Takagi, M. & Yano, K., 1990, Agric. Biol. Chem., 54: 1771–1779PubMedCrossRefGoogle Scholar
  30. Innis, M. A., Holland, M. J., McCabe, P. C., Cole, G. E., Wittman, V. P., Tal, R., Watt, K. W. K., Gelfand, D. H., Holland, J. P. & Meade, J. H., 1985, Science, 228: 21–26.PubMedCrossRefGoogle Scholar
  31. James, M. N. G. & Sielecki, A. R., 1983, J. Mol. Biol., 163: 299–361.PubMedCrossRefGoogle Scholar
  32. Jenkins, J., Tickle, I., Sewell, T., Ungaretti, L., Wollmer, A. & Blundell, T., 1977, in: Acid Proteinases, Structure, Function and Biology (Tang, J., ed.). pp. 43–60. Plenum, New York.Google Scholar
  33. Kawaguchi, Y., Shimizu, N., Nishimori, K., Uozumi, T. & Beppu, T., 1984, J. Biotechnol., 1: 307–315.CrossRefGoogle Scholar
  34. Kawaguchi, Y., Kosugi, S., Sasaki, K., Uozumi, T. & Beppu, T., 1987, Agric. Biol. Chem., 51: 1871–1877.CrossRefGoogle Scholar
  35. Kobayashi, H., Sekibata, S., Shibuya, H., Yoshida, S., Kusakabe, I. & Murakami, K., 1989, Agric. Biol. Chem., 53: 1927–1933.CrossRefGoogle Scholar
  36. MacKay, V. L., Welch, S. K., Insley, M. Y., Manney, T. R., Holly, J., Saari, G. C. & Parker, M. L., 1988, Proc. Natl. Acad. Sci. USA, 85: 55–59.PubMedCrossRefGoogle Scholar
  37. McCaman, M. T. & Cummings, D. B., 1986, J. Biol. Chem., 261: 15345–15348.PubMedGoogle Scholar
  38. McCaman, M. T. & Cummings, D. B., 1988, Proteins, 3: 256–261.PubMedCrossRefGoogle Scholar
  39. McCaman, M. T., Andrews, W. H. & Files, J. G., 1985, J. Biotechnol., 2: 177–190.CrossRefGoogle Scholar
  40. Maita, T., Nagata, S., Matsuda, G., Maruta, S., Oda, K., Murao, S. & Tsuru, D., 1984, J. Biochem., 95: 465–475.PubMedGoogle Scholar
  41. Mantafounis, D. & Pitts, J., 1990, Prot. Eng., 3: 605–609.CrossRefGoogle Scholar
  42. Marston, F. A. O., Lowe, P. A., Doel, M. T., Schoemaker, J. M., White, S. & Angal, S., 1984, Biotechnology, 2: 800–804.CrossRefGoogle Scholar
  43. Mellor, J., Dobson, M. J., Roberts, N. A., Tuite, M. F., Emtage, J. S., White, S., Lowe, P. A., Patel, T., Kingsman, A. J. & Kingsman, S. M., 1983, Gene, 24: 1–14.PubMedCrossRefGoogle Scholar
  44. Moir, DS. T., Mao, J., Duncan, M. J., Smith, R. A. & Kohno, T., 1985, in: Developments in Industrial Microbiology, Vol. 26 (Underkoffler, L., ed.). pp. 75–85. Society for Industrial Microbiology, Arlington.Google Scholar
  45. Murao, S.& Oda, K., 1985, in: Aspartic Proteinases and their Inhibitors (Kostka, V., ed.). pp. 379–399. Walter de Gruyter, Berlin.Google Scholar
  46. Nishimori, K., Shimizu, N., Kawaguchi, Y., Hidaka, M., Uozumi, T. & Beppu, T., 1984, Gene, 29: 41–49.PubMedCrossRefGoogle Scholar
  47. Oda, K. & Murao, S., 1974, Agric. Biol. Chem., 38: 2435–2444.CrossRefGoogle Scholar
  48. Ostoslavskaya, V. I., Revina, L. P., Kotlova, E. K., Surova, I. A., Levin, E. D., Timokhina, E. A. & Štepanov, V. M., 1986, Bioorg. Khim., 8: 1030–1047.Google Scholar
  49. Pedersen, V. B., Christensen, K. A. & Foltmann, B., 1979, Eur. J. Biochem., 94: 573–580.PubMedCrossRefGoogle Scholar
  50. Perlman, D. & Halvorson, H. O., 1983, J. Mol. Biol., 167: 391–409.PubMedCrossRefGoogle Scholar
  51. Petrova, E. N., Revina, L. P., Timokhina, E. A., Lavrenova, G. I., Vaganova, T. I. & Štepanov, V. M., 1987, Biokhimiya, 53: 1389–1396.Google Scholar
  52. Smith, R. A., Duncan, M. J. & Moir, D. T., 1985, Science, 229: 1219–1224.PubMedCrossRefGoogle Scholar
  53. Stepanov, V. M., Lavrenova, G. I., Terent’eva, E. Yu., & Khodova, O. M., 1990, FEBS Lett., 260: 173–175.PubMedCrossRefGoogle Scholar
  54. Suguna, K., Bott, R. R., Padlan, E. A., Subramanian, E., Sheriff, S., Cohen, G. H. & Davies, D. R., 1987, J. Mol Biol, 196: 877–900.PubMedCrossRefGoogle Scholar
  55. Suzuki, J., Sasaki, K., Sasao, Y., Hamu, A., Kawasaki, H., Nishiyama, M., Horinouchi, S. & Beppu, T., 1989, Prot. Eng., 2: 563–569.CrossRefGoogle Scholar
  56. Takahashi, K., 1987, J. Biol Chem., 262: 1468–1478.PubMedGoogle Scholar
  57. Tang, J. & Wong, R. N. S., 1987, J. Cell Biochem., 33: 53–63.PubMedCrossRefGoogle Scholar
  58. Thompson, S. A., 1990, in: Molecular Industrial Mycology: Systems and Applications (Leong, S. A. & Berka, R. M., eds.). in press. Marcel Dekker, New York.Google Scholar
  59. Tonouchi, N., Shoun, H., Uozumi, T. & Beppu, T., 1986, Nucl. Acids Res., 14: 7557–7568.PubMedCrossRefGoogle Scholar
  60. Tsujita, Y. & Endo, A., 1976, Biochim. Biophys. Acta, 445: 194–204.PubMedGoogle Scholar
  61. Tsujita, Y. & Endo, A., 1977, J. Biochem., 81: 1063–1070.PubMedGoogle Scholar
  62. Tsuru, D., Shimada, S., Maruta, S., Yoshimoto, T., Oda, K., Murao, S., Miyata, T. & Iwanaga, S., 1986, J. Biochem., 99: 1537–1539.PubMedGoogle Scholar
  63. Tsuru, D., Kobayashi, R., Nakagawa, N. & Yoshimoto, T., 1989a, Agric. Biol. Chem., 53: 1305–1312.CrossRefGoogle Scholar
  64. Tsuru, D., Naotsuka, A., Kobayashi, R., Yoshimoto, T., Oda, K. & Murao, S., 1989b, Agric. Biol. Chem., 53: 2751–2756.CrossRefGoogle Scholar
  65. van den Berg, J. A., van der Laken, K. J., van Ooyen, A. J. J., Renniers, T. C. H. M., Rietveld, K., Schaap, A., Brake, A. J., Bishop, R. J., Schultz, K., Moyer, D., Richman, M. & Shuster, J. R., 1990, Biol technology, 8: 135–139.Google Scholar
  66. Ward, M., 1989a, in; Genetics and Molecular Biology of Industrial Microorganisms (Hershberger, C. L., Queener, S. W. & Hegeman, G., eds.). pp. 288–294. American Society for Microbiology, Washington.Google Scholar
  67. Ward, M., 1989b, in: Proceedings of the EMBO-Alko Workshop on Molecular Biology of Filamentous Fungi (Nevalainen, H. & Penttil, M., eds.). pp. 119–128. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki.Google Scholar
  68. Ward, M., Wilson, L. J., Kodama, K. H., Rey, M. W. & Berka, R. M., 1990, Bio/technology 8: 435–440.PubMedCrossRefGoogle Scholar
  69. Woolford C. A., Daniels, L. B., Park, F. J., Jones, E. W., van Arsdell, J. N. & Innis M. A., 1986, Mol. Cell. Biol., 6: 2500–2510.PubMedGoogle Scholar
  70. Yamashita, T., Tonouchi, N., Uozumi, T. & Beppu, T., 1987, Mol. Gen. Genet. 210: 462–467.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michael Ward
    • 1
  • Katherine H. Kodama
    • 1
  1. 1.Genencor InternationalSouth San FranciscoUSA

Personalised recommendations