Colonization of The Murine Gastrointestinal Tract by Salmonella typhimurium

  • Roy CurtissIII
  • Jorge Galán
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 58)


Salmonella infection of animal hosts results, in general, from oral consumption of contaminated foods. It is therefore important to understand the series of events necessary for Salmonella to exist both outside and inside the host. We have set out to define biochemically and genetically the gene products necessary for S. typhimurium to traffic through the animal host and also to determine how S. typhimurium regulates the expression of these genes in response to the changing environmental niches occupied during transit through this infection pathway. Ultimately, information from such studies should be useful in the design and construction of attenuated Salmonella derivatives to use for immunization to prevent infection.


Intestinal Colonization Component Regulatory System Salmonella TYPHIMURIUM Outer Membrane Porin Protein phoP Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Galan, J. E., and R. Curtiss III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Nat. Acad. Sci. USA. 86:6383–6387.Google Scholar
  2. 2).
    Gulig, P. A., and Roy Curtiss III. 1987. Plasmid-associated virulence of Salmonella typhlmurium. Infect. Immun. 55:2891–2901PubMedGoogle Scholar
  3. 3).
    Galan, J. E., and R. Curtiss III. 1989. Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microbial Pathogenesis 6:433–443.PubMedCrossRefGoogle Scholar
  4. 4).
    Galan, J. E., and Roy Curtiss III. 1990. Expression of Salmonella genes required for invasion is regulated by changes in DNA supercoiling. Infect. Immune. 59:1879–1885.Google Scholar
  5. 5).
    Lockman, H. and R. Curtiss III. 1990. Salmonella typhimurium mutants lacking flagella or motility remain virulent in Balb/c mice. Infect. Immun. 58:137–143.PubMedGoogle Scholar
  6. 6).
    Jones, G. W., D. K. Rabert, D. M. Svinarich, and H. J. Whitfield. 1982. Association of adhesive, invasive and virulent phenotypes of Salmonella typhimurium with autonomous60-megadalton plasmid. Infect. Immun. 38:476–486.PubMedGoogle Scholar
  7. 7).
    Manoil, C, and J. Beckwith. 1985. TnphoA: a transposon probe for protein export signals. Proc. Natl. Acad. Sei. USA 82:8129–8133.CrossRefGoogle Scholar
  8. 8).
    Cairney, J., I. R. Booth, and C. F. Higgins. 1986. Osmoregulation of gene expression in Salmonella typhlmurium: proU encodes an osmotically induced betaine transport system. J. Bacteriol. 164: 1224–1232.Google Scholar
  9. 9).
    Hall, M. N., and T. J. Silhavy. 1979. The ompB locus and the regulation of the major outer membrane porin protein of Escherichia coli K12. J. Mol. Biol. 146:23–43.CrossRefGoogle Scholar
  10. 10).
    Goldstein, E., and K. Drlica. 1984. Regulation of bacterial DNA supercoiling:Plasmid linking numbers vary with growth temperature. Proc. Natl. Acad. Sei. USA 81:4046–4050.CrossRefGoogle Scholar
  11. 11).
    Kranz, R. G., and R. Haselkorn. 1986. Anaerobic regulation of nitrogenfixation genes in Rhodopseudomona capsulata. Proc. Natl. Acad. Sei. USA 83:6805–6809.CrossRefGoogle Scholar
  12. 12).
    Pruss, G. J., and K. Drlica. 1989. DNA supercoiling and prokaryotic transcription. Cell 56:521–523.PubMedCrossRefGoogle Scholar
  13. 13).
    Yamamoto, N., and M. Droffner. 1985. Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc. Natl. Acad. Sei. USA 82:2077–2081.CrossRefGoogle Scholar
  14. 14).
    Maurelli, A. T., and Sansonetti, P. J. 1988. Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proc. Natl. Acad. Sei. USA 85:2820–2824.CrossRefGoogle Scholar
  15. 15).
    Spears, P. A., D. Schauer, and P. E. Orndorff. 1986. Metastable regulation of type I piliation in Escherichia coli and isolation and characterization of phenotypically stable mutant. J. Bacteriol. 168:179–185.PubMedGoogle Scholar
  16. 16).
    Dorman, C. J., N. NiBhriain, and C. F. Higgins. 1990. DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature 344:789–792.PubMedCrossRefGoogle Scholar
  17. 17).
    Fields, P. I., E. A. Groisman, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062.PubMedCrossRefGoogle Scholar
  18. 18).
    Miller, S. I., A. M. Kukral, and J. J. Mekalanos. 1989. A two component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Nat. Acad. Sei. USA 86:5054–5058.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Roy CurtissIII
    • 1
  • Jorge Galán
    • 2
  1. 1.Department of BiologyWashington UniversitySt. LouisUSA
  2. 2.Department of Microbiology School of MedicineState University of New YorkStony BrookUSA

Personalised recommendations