Characteristics of the Recognition of Host Cell Carbohydrates by Viruses and Bacteria

  • Karl-Anders Karlsson
  • Jonas Ångström
  • Susann Teneberg
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 58)


Microbial interactions with host tissues is at present a field in a fascinating development both basically and concerning potential applications. Our knowledge of virus receptors is more advanced than that of bacterial systems, in part based on the crystal conformation of the influenza virus hemagglutinin in complex with the receptor, sialic acid (1), and the crystal structures of picornaviruses (see 2). The “Canyon hypothesis” (2) suggests that one strategy for viruses to escape immune surveillance is to protect the receptor attachment site in a surface depression which is too narrow to be reached by antibodies. This site is conserved on the otherwise hypervariable surface of the viruses. Development of protective vaccines may therefore get very difficult or impossible, and efforts are growing to prepare soluble receptor analogues that may inhibit viral attachment, based on carbohydrate (1,3,4) or protein (2,5,6) receptors, and there appears to be good opportunities for rational drug design.


Sialic Acid Rota Virus Cholera Toxin Shiga Toxin Bordetella Pertussis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Weis, J.H. Brown, S. Cusack, J.C. Paulson, J.J. Skehel and D.C. Wiley, Structure of the influenza virus hemagglutinin complexed with its receptor, sialic acid. Nature 333:426 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    M.G. Rossman, The Canyon hypothesis, J. Biol. Chem. 264:14587 (1989).Google Scholar
  3. 3.
    M.G. Rossman, Viral receptors and drug design. Nature 333:392 (1988).CrossRefGoogle Scholar
  4. 4.
    N.K. Sauter, M.D. Bednarski, B.A. Wurzburg, J.E. Hanson, G.M. Whitesides, J.J. Skehel and D.C. Wiley, Hemagglutinins of two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: A 500-MHz proton nuclear magnetic resonance study. Biochemistry 28:8388 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    S.D. Marlin, D.E. Staunton, T.A. Springer, C. Stratowa, W. Sommergruber and V.J. Merluzzi, A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature 344:70 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    C.R.M. Bangham and A.J. McMichael, Nosing ahead in the cold war, Nature 344:16 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Mirelman (ed), “Microbial lectins and agglutinins”, John Wiley and Sons, New York (1986).Google Scholar
  8. 8.
    T.L. Lentz, The recognition event between virus and host cell receptor: a target for antiviral agents, J. Gen. Virol. 71:751 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    J.C. Paulson, Interactions of animal viruses with cell surface receptors, in: “The receptors”. Vol. 2, P.C. Conn, ed., Academic Press, Orlando (1985).Google Scholar
  10. 10.
    K.-A. Karlsson, Animal glycosphingolipids as membrane attachment sites for bacteria, Annu. Rev. Biochem. 58:309 (1989).CrossRefGoogle Scholar
  11. 11.
    S. Björk, M.E. Breimer, G.C. Hansson, K.-A. Karlsson and H. Leffler, Structures of blood group glycosphingolipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor, J. Biol. Chem. 262:6758 (1987).PubMedGoogle Scholar
  12. 12.
    J. Finne, M.E. Breimer, G.C. Hansson, K.-A. Karlsson, H. Leffler, J.F.G. Vliegenthart and H. van Halbeek, Novel polyfucosylated N-linked glycopeptides with blood group A, H, X and Y determinants from human small intestinal epithelial cells, J. Biol. Chem. 264:5720 (1989).PubMedGoogle Scholar
  13. 13.
    J. Holgersson, N. Strömberg and M.E. Breimer, Glycolipids of human large intestine: differences in glycolipid expression related to anatomical localization, epithelial/nonepithelial tissue and the ABO, Le and Se phenotypes of the donors, Biochimie 70:1565 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    CarbBank, The Complex Carbohydrate Structure Database, University of Georgia, Complex Carbohydrate Research Center, Copyright (1990).Google Scholar
  15. 15.
    T. Pacuszka and P. Fishman, Generation of cell surface neoganglioproteins. GM1-Neoganglioproteins are non-functional receptors for cholera toxin, J. Biol. Chem. 265:7673 (1990).PubMedGoogle Scholar
  16. 16.
    G.C. Hansson, K.-A. Karlsson, G. Larson, N. Strömberg, J. Thurin, C. Örvell and E. Norrby, A novel approach to the study of glycolipid receptors for viruses. Binding of Sendai virus to thin-layer chromatograms, FEBS Lett. 170:15 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    K.-A. Karlsson, E. Norrby and G. Wadell, Antiviral agents. Patent PCT no. PCT/DK/00007 (1986).Google Scholar
  18. 18.
    N. Strömberg and K.-A. Karlsson, Characterization of the binding of Propionibacterium granulosum to glycosphingolipids adsorbed on surfaces. An apparent recognition of lactose which is dependent on the ceramide structure, J. Biol. Chem. 265:11244 (1990).PubMedGoogle Scholar
  19. 19.
    N. Strömberg and K.-A. Karlsson, Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach, J. Biol. Chem. 265:11251 (1990).PubMedGoogle Scholar
  20. 20.
    E. Tuomanen, H. Towbin, G. Rosenfelder, D. Braun, G. Larson, G.C. Hansson and R. Hill, Receptor analogues and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells, J. Exp. Med. 168:267 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    N. Baker, G.C. Hansson, H. Leffler, G. Riise and C. Svanborg Eden, Glycosphingolipid receptors for Pseudomonas aeruginosa. Infect. Immun. 58:2361 (1990).PubMedGoogle Scholar
  22. 22.
    V. Jimenez-Lucho, V. Ginsburg and H.C. Krivan, Cryptococcus neoformans, Candida albicans, and other fungi bind to the glycosphingolipid lactosylceramide, a possible adhesion receptor for yeasts. Infect. Immun. 58:2085 (1990).PubMedGoogle Scholar
  23. 23.
    D.K. Paruchuri, H.S. Seifert, R.S Ajioka, K.-A. Karlsson and M. So, Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin, Proc. Natl. Acad. Sci. USA 87:333 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    G.C. Hansson, K.-A. Karlsson, G. Larson, A.A. Lindberg, N. Stromberg and J. Thurin, Lactosylceramide is the probable adhesion site for major indigenous bacteria of the gastrointestinal tract, in: “Glycoconjugates”, Proc. of the 7th International Symposium on Glycoconjugates, M.A. Chester, D. Heinegård, A. Lundblad and S. Svensson, eds., Rahms, Lund, Sweden (1983).Google Scholar
  25. 25.
    J.E. Brown, K.-A. Karlsson, A.A. Lindberg, N. Strömberg and J. Thurin, Identification of the receptor glycolipid for the toxin of Shigella dysenteriae, in: “Glycoconjugates”, Proc. of the 7th International Symposium on Glycoconjugates, M.A. Chester, D. Heinegard, A. Lundblad and S. Svensson, eds., Rahms, Lund, Sweden (1983).Google Scholar
  26. 26.
    N. Strömberg, B.-I. Marklund, B. Lund, D. liver, A. Hamers, W. Gaastra, K.-A. Karlsson and S. Normark, Host-specificity of uropathogenic E. coli depends on differences in binding specificity to Galα4Gal-containing isoreceptors, EMBO J. 9:2001 (1990).Google Scholar
  27. 27.
    N. Strömberg, M. Ryd, A.A. Lindberg and K.-A. Karlsson, Two species of Propionibacterium apparently recognize separate epitopes on lactose of lactosylceramide, FEBS Lett. 232:193 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    J.F. Karr, B. Nowicki, L.D. Truong, R.A. Hull and S.I. Hull, Purified P-fimbriae from two cloned gene clusters of a single pyelonephritogenic strain adhere to unique structures in the human kidney. Infect. Immun. 57:3594 (1989).PubMedGoogle Scholar
  29. 29.
    A.A. Lindberg, J.E. Brown, N. Strömberg, M. Westling-Ryd, J.E. Schultz and K.-A. Karlsson, Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1, J. Biol. Chem. 262:1779 (1987).PubMedGoogle Scholar
  30. 30.
    S. DeGrandis, H. Law, J. Brunton, C. Gyles and C.A. Lingwood, Globotetraosylceramide is recognized by the pig edema disease toxin, J. Biol. Chem. 264:12520 (1989).PubMedGoogle Scholar
  31. 31.
    J.E. Samuel, L.P. Perera, S. Ward, A.D. O’Brien, V. Ginsburg and H.C. Krivan, Comparison of the glycolipid receptor specificities of Shiga-like toxin typeII and Shiga-like toxin type II variants. Infect. Immun. 58:611 (1990).PubMedGoogle Scholar
  32. 32.
    M.P. Jackson, Structure-function analyses of Shiga toxin and the Shiga-like toxins, Microb. Pathogenesis 8:235 (1990).CrossRefGoogle Scholar
  33. 33.
    K.-A. Karlsson, Animal glycolipids as attachment sites for microbes, Chem. Phys. Lipids 42:153 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Kihlberg, S.J. Hultgren, S. Normark and G. Magnusson, Probing the combining site of the PapG adhesin of uropathogenic E. coli bacteria by synthetic analogues of galabiose, J. Am. Chem. Soc. 111:6364 (1989).CrossRefGoogle Scholar
  35. 35.
    W.G.J. Hol, Protein crystallography and computer graphics- toward rational drug design, Angew. Chem. 25:767 (1986).CrossRefGoogle Scholar
  36. 36.
    M.N. Matrosovich, Towards the development of antimicrobial drugs acting by inhibition of pathogen attachment to host cells: a need for multivalency, FEBS Lett. 252:1 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    N. Firon, S. Ashkenazi, D. Mirelman, I. Ofek and N. Sharon, Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated E. coli to yeast and intestinal epithelial cells. Infect. Immun. 55:472 (1987).PubMedGoogle Scholar
  38. 38.
    A. Holmgren and C.-I. Brändén, Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342:248 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    K.-A. Karlsson, Current experience from the interaction of bacteria with glycosphingolipids, in: “Molecular mechanisms of microbial adhesion”, L. Switalski, M. Höök and E. Beachey, eds., Springer-Verlag, New York (1989).Google Scholar
  40. 40.
    S. Sabesan, K. Bock and R.U. Lemieux, The conformational properties of the gangliosides GM2 and GM1 based on H1 and C13 nuclear magnetic resonance studies. Can. J. Chem. 62:1034 (1984).CrossRefGoogle Scholar
  41. 41.
    M. Mouricout, J.M. Petit, J.R. Carias and R. Julien, Glycoprotein glycans that inhibit adhesion of E. coli mediated by K99 fimbriae: Treatment of experimental colibacillosis, Infect. Immun. 58:98 (1990).Google Scholar
  42. 42.
    S. Teneberg, P. Willemsen, F.K. de Graaf and K.-A. Karlsson, Receptor-active glycolipids of epithelial cells of the small intestine of young and adult pigs in relation to susceptibility to infection with E. coli K99, FEBS Lett. 263:10 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Karl-Anders Karlsson
    • 1
  • Jonas Ångström
    • 1
  • Susann Teneberg
    • 1
  1. 1.Department of Medical BiochemistryUniversity of GöteborgGöteborgSweden

Personalised recommendations