Microvillar Photoreceptor Cells of Invertebrates

Anatomy and Physiology
  • H. Stieve
Part of the NATO ASI Series book series (NSSA, volume 194)


The photoreceptor cells of invertebrate animals differ from those of vertebrates in morphology and physiology. Our present knowledge of structure and transduction mechanism of the microvillar photoreceptor cell of invertebrates is described. Less than for vertebrates is known about the biochemistry of the enzyme cascade which leads in the invertebrate photoreceptor from the light-activated rhodopsin molecule to the formation of the excitatory intracellular transmitter. A GTP-binding protein is activated. The activity of phospholipase C., which catalyzes the formation of inositol-trisphosphate, is essential. The intracellular transmitter which binds to the cation channel to open it has not yet been identified; cGMP or Ca ions are suspects. The single-photon-evoked events, bumps, are assumed to be based on a light-induced concerted opening of many cation channels. The bumps vary greatly in delay, size and shape. The intensity dependence of the size of the macroscopic receptor current has a region of supralinear slope. The mechanisms of light/dark adaptation are better understood in photoreceptors of invertebrates than in those of vertebrates. Calcium is a desensitizing intracellular transmitter for light adaptation. cAMP is apparently another controller of sensitivity in dark adaptation.


Photoreceptor Cell Visual Pigment Automatic Gain Control Light Adaptation Visual Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacigalupo, J. and Lisman, J. E., 1983, Single-channel currents activated by light in Limulus ventral photoreceptors, Nature, 304:268–207.PubMedCrossRefGoogle Scholar
  2. Baylor, D. A., Nunn, B. J. and Schnapf, J. L., 1984, The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis, J. Physiol., 357:575–607.PubMedGoogle Scholar
  3. Becker, U. W., Nuske, J. H. and Stieve, H., 1988, Phototransduction in the microvillar visual cell of Limulus: Electrophysiology and Biochemistry, in: “Progress in Retinal Research,” N. Osbarne, J. Chader, ed., Pergamon Press, Vol 8, 229–253Google Scholar
  4. Brown, J. E., 1986, Calcium and light adaptation in invertebrate photoreceptors, in: “The Molecular Mechanism of Photoreception,” H. Stieve, ed., Dahlem Konferenzen, 231–240, Springer, Berlin.CrossRefGoogle Scholar
  5. Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. P., Irvine, R. F., Berridge, M. J. and Anderson, R. E., 1984, Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors, Nature, 311:160–163.PubMedCrossRefGoogle Scholar
  6. Brown, J. E. and Rubin, L. J., 1986, Signal transduction: The putative participation of inositol trisphosphates in Limulus photoreceptors, Fortschritte der Zoologie, 33:321–331.Google Scholar
  7. Calman, G. B. and Chamberlain, S. C., 1982, Distinct lobes of Limulus ventral photoreceptors, II. Structure and ultrastructure, J. Gen. Physiol., 80:839–862.PubMedCrossRefGoogle Scholar
  8. Claßen-Linke, I. and Stieve, H., 1986, The sensitivity of the ventral nerve photoreceptor of Limulus recovers after light adaptation in two phases of dark-adaptation, Naturforsch., 41c:657–667.Google Scholar
  9. Corson, D. W. and Fein, A., 1983, Chemical excitation of Limulus photoreceptors: I. Phosphatase inhibitors induce discrete-wave production in the dark, J. Gen. Physiol., 82:639–657.PubMedCrossRefGoogle Scholar
  10. Corson, D.W., Fein, A. and Walthall, W. W., 1983, Chemical excitation of Limulus photoreceptors: II.Vanadate, GTP-gamma-S, and fluoride prolong excitation evoked by dim flashes of light, J. Gen. Physiol., 82:659–677PubMedCrossRefGoogle Scholar
  11. Devary, O., Heichal, O., Blumenfeld, A., Cassel, D., Suss, E., Barash, S., Rubinstein, C. T., Minke, B., and Selinger, Z., 1987, Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors, Proc. Natl. Acad. Sci.USA, 84:3939–3943.CrossRefGoogle Scholar
  12. Fein, A., Payne, R., Corson, D.W., Berridge, M. J. and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature, 311:157–160.PubMedCrossRefGoogle Scholar
  13. Hamdorf, K., 1979, The physiology of invertebrate visual pigment, In: “Handbook of Sensory Physiology,” H. Autrum, ed., Vol 7, 145–224, Springer, Berlin.Google Scholar
  14. Ivens, I., and Stieve, H., 1984, Influence of the membrane potential on the intracellular light induced Ca2+-concentration change of the Limulus ventral photoreceptor monitored by arsenazo III under voltage clamp conditions, Z. Naturforsch., 39c:986–992.Google Scholar
  15. Johnson, E. C., Robinson, P. R. and Lisman, J. E., 1986, Cyclic GMP is involved in the excitation of invertebrate photoreceptors, Nature, 324:468–470.PubMedCrossRefGoogle Scholar
  16. Keiper, W., Schnakenberg, J. and Stieve, H., 1984, Statistical analysis of quantum bump parameters in Limulus ventral photoreceptors, Z. Naturforsch., 39c:781–790.Google Scholar
  17. Lisman, J. E. and Brown, J. E., 1972, The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors, J. Gen. Physiol., 59:701–719.PubMedCrossRefGoogle Scholar
  18. Lisman, J. E. and Brown, J. E., 1975, Light-induced changes of sensitivity in Limulus ventral photoreceptors, J. Gen. Physiol., 66:473–488.PubMedCrossRefGoogle Scholar
  19. Nagy, K. and Stieve, H., 1983, Changes in intracellular calcium ion concentration in the course of dark adaptation measured by arsenazo III in the Limulus photoreceptor, Biophys. Struct. Mech., 9:207–223.CrossRefGoogle Scholar
  20. O’Day, P. M. and Gray-Keller, M. P., 1989, Evidence for electrogenic Na+/Ca2+-exchange in Limulus ventral photoreceptors, J. Gen. Physiol., 93:473–495.PubMedCrossRefGoogle Scholar
  21. Paulsen, E. and Bentrop, J., 1986, Light-modulated biochemical events in fly photoreceptors, Fortschritte der Zoologie, 33:299–319.Google Scholar
  22. Payne, R., Corson, D., Fein, A. and Berridge, M. J., 1986, Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5-trisphosphate result from a rise in intracellular calcium, J. Gen. Physiol., 88:127–142.PubMedCrossRefGoogle Scholar
  23. Schnakenberg, J., 1989, “Amplification and latency in photoreceptors: Integrated or separated phenomena?”, Biol. Cybernetics, 60:421–437.CrossRefGoogle Scholar
  24. Shortridge, R. D., Bloomquist, B. T., Schneuwly, S., Perdew, M. H. and Pak, W. L., 1988, Molecular isolation and analysis of a photoreceptor-specific phospholipase C gene, norpA, of Drosophila, in: “XI Yamada Conference, Molecular Physiology of Retinal Proteins,” T. Hara and Mt. Hiei, ed., Kyoto, Japan.Google Scholar
  25. Stieve, H., 1985, Phototransduction in invertebrate visual cells. The present state of research — exemplified and discussed through the Limulus photoreceptor cell, in: “Neurobiology,” R. Gilles and J. Balthazart, ed., 346–362.Google Scholar
  26. Stieve, H., 1986 a, Introduction, in: “The Molecular Mechanism of Phototransduction,” H. Stieve, ed., Dahlem Konferenzen, 1–10, Springer, Berlin.CrossRefGoogle Scholar
  27. Stieve, H., 1986 b, Bumps, the elementary excitatory responses of invertebrates, in: “The Molecular Mechanism of Phototransduction,” H. Stieve, ed., Dahlem Konferenzen, 199–230, Springer, Berlin.CrossRefGoogle Scholar
  28. Stieve, H., Bruns, M., Gaube, H., 1983, The intensity dependence of the receptor potential of the Limulus ventral nerve photoreceptor in two defined states of light- and dark adaptation, Z. Naturforsch., 38c:1043–1054.Google Scholar
  29. Stieve, H., Bruns, M., Gaube, H., 1984, The sensitivity shift due to light adaptation depending on the extracellular calcium ion concentration in Limulus ventral nerve photoreceptor, Z. Naturforsch., 39c:662–679.Google Scholar
  30. Stieve, H., Gaube, H., Klomfaß, J., 1986, Effect of external calcium concentration on the intensity dependence of light-induced membrane current and voltage signals in two defined states of adaptation in the photoreceptor of Limulus, Z. Naturforsch., 41c:1092–1110.Google Scholar
  31. Stieve, H., Heuter, H., Hua, P., Nuske, J. Rüsing, G., Schloesser, B., 1988, Excitation and adaptation in the photoreceptor cell of Limulus, in: “XXI Yamada Conference, Molecular Physiology of Retinal Proteins,” T. Hara, Mt. Hiei, ed., Kyoto, Japan.Google Scholar
  32. Stieve, H., and Schloesser, B., 1987, The intensity dependence of the Limulus photoreceptor current shows consecutive regions of linear, supralinear and sublinear slope, in: “New Frontiers in Brain Research. Proc. 15th Goettingen Neurobiology Conference,” Eisner N., Creutzfeld, O., ed., Georg Thieme, Stuttgart.Google Scholar
  33. Stieve, H., Schnakenberg, J., Kuhn, A., Reuss, H., 1986, An automatic gain control in the Limulus photoreceptor, Fortschritte der Zoologie, 33:367–376.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • H. Stieve
    • 1
  1. 1.Institut für Biologie IIRWTHAachenGermany

Personalised recommendations