Skip to main content

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

Abstract

The aim of the study of visual transduction is to understand the mechanism by which the photoreceptor cell translates the light stimulus into the language of the nervous system. Nature has solved the task of photoreception by using the typical tools of a cell (such as enzymes, membranes, and ion channels) and modifying and adapting them for the visual function. Therefore, besides being a value in itself, our understanding of the mechanism of visual transduction also contributes to general neurobiology and cell biology. For example, the cGMP controlling enzyme cascade in vertebrate visual cells is at present one of the best studied examples of the regulation of cyclic nucleotide as a cellular second messenger (see Applebury et al., this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armon, E., and Minke, B. 1983. Light activated electrogenic Na+-Ca-exchange in fly photoreceptors: modulation by Na+/K+-pump activity. Biophys. Struct. Mech. 9: 349–357.

    Article  CAS  Google Scholar 

  2. Bacigalupo, J., and Lisman, J.E. 1983. Single-channel currents activated by light in Limulus ventral photoreceptors. Nature 304: 268–270.

    Article  CAS  PubMed  Google Scholar 

  3. Brown, J.E.; Rubin, J.L.; Traver, A.P.; Ghalayini, A.J.; Irvine, R.F.; and Anderson, R.E. 1984. Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311: 160–163.

    Article  CAS  PubMed  Google Scholar 

  4. Cone, R.A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane. Nat. New Biol. 236: 39–43.

    CAS  PubMed  Google Scholar 

  5. Cone, R.A. 1973. The internal transmitter model of visual excitation, some quantitative implications. In Biochemistry and Physiology of Visual Pigments, ed. H. Langer, pp. 275–282. Berlin: Springer-Verlag.

    Google Scholar 

  6. Delbrück, M. 1974. Anfänge der Wahrnehmung. Karl-August-Forster Lectures Akademie der Wissenschaften und Literatur (Mainz) 10: 8–48.

    Google Scholar 

  7. Fein, A.; Payne, R.; Corson, D.; Berridge, M.J.; and Irvine, R.F. 1984. Photoreceptor excitation and adaptation by inositol 1, 4, 5-triphosphate. Nature 311: 157–160.

    Article  CAS  PubMed  Google Scholar 

  8. Fesenko, E.E.; Kolesnikov, S.S.; and Lyubarsky, A.L. 1984. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313: 310–313.

    Article  Google Scholar 

  9. Hagins, W.A. 1972. The visual process: excitatory mechanism in the primary receptor cells. Ann. Rev. Biophys. Bioeng. 1: 131–158.

    Article  CAS  Google Scholar 

  10. Haynes, L., and Yau, K.-W. 1985. Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature, in press.

    Google Scholar 

  11. Ivens, I., and Stieve, H. 1984. Influence of the membrane potential on the intracellular light induced Ca2+-concentration change of the Limulus ventral photoreceptor monitored by Arsenazo III under voltage clamp conditions. Z. Naturforsch. 39c: 986–992.

    CAS  Google Scholar 

  12. Kramer, L., and Widman, T. 1977. Quantitative model for the electric response of invertebrate and vertebrate photoreceptors. Biophys. Struct. Mech. 2: 333–336.

    Article  CAS  PubMed  Google Scholar 

  13. Matthews, H.R.; Torre, V.; and Lamb, T.D. 1985. Effects on the photoresponse of calcium buffer and cyclic GMP incorporated into the cytoplasm of retinal rods. Nature 313: 582–584.

    Article  CAS  PubMed  Google Scholar 

  14. Minke, B. 1977. Drosophila mutant with a transducer defect. Biophys. Struct. Mech. 3: 59–64.

    Article  CAS  PubMed  Google Scholar 

  15. O’Tousa, J.E.; Baehr, W.; Martin, R.L.; Hirsh J.; Pak, W.L.; and Applebury, M.L. 1985. The Drosophila ninaE gene encodes an opsin. Cell 40: 839–850.

    Article  PubMed  Google Scholar 

  16. Pak, W.L.; Conrad, S.K.; Kremer, N.E.; Larrivee, D.C.; Schinz, R.H.; and Wong, F. 1980. Photoreceptor function. In Development and Neurobiology of Drosophila, eds. O. Siddiqu, P. Babu, L.M. Hall, and J.C. Hall, pp. 331–346. New York: Plenum Publishing Corp.

    Google Scholar 

  17. Pak, W.L.; Ostroy, S.E.; Deland, M.C.; and Wu, C.F. 1976. Photoreceptor mutant of Drosophila: is a protein involved in intermediate steps of phototransduction? Science 194: 956–959.

    Article  CAS  Google Scholar 

  18. Stieve, H. 1977. Thoughts on the comparative biology of photosensory function. Verh. Dtsch. Zool. Ges. 1–25. Stuttgart: Gustav-Fischer-Verlag.

    Google Scholar 

  19. Stieve, H., and Bruns, M. 1980. Dependence of bump rate and bump size in Limulus ventral nerve photoreceptor on light adaptation and calcium concentration. Biophys. Struct. Mech. 6: 271–285.

    Article  CAS  Google Scholar 

  20. Szuts, E.Z.; Reid, M.S.; Payne, R.; Corson, D.W.; and Fein, A. 1985. Physiology and biochemistry evidence for a role for inositol 1, 4, 5-triphosphate in visual transduction. Suppl. Inv. Ophthal. Vis. Sci. 26: 167.

    Google Scholar 

  21. Tomita, T. 1965. Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold S.H. Symp. Quant. Biol. 30: 559–566.

    CAS  Google Scholar 

  22. Yau, K.-W., and Nakatani, K. 1985a. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature 313: 579–582.

    Article  CAS  PubMed  Google Scholar 

  23. Yau, K.-W., and Nakatani, K. 1985b. Light-suppressible cyclic GMP-sensitive conductance in the plasma membrane of truncated rod outer segment. Nature, in press.

    Google Scholar 

  24. Yoshikami, S., and Hagins, W.A. 1971. Light, calcium and the photocurrent of rods and cones. Biophys. Soc. Ann. Meet. Abstr. 11: 47a.

    Google Scholar 

  25. Zuker, C.S.; Cowman, A.F.; and Rubin, G.M. 1985. Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40: 851–858.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Stieve, H. (1986). Introduction. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics