Advertisement

RNA Sequence Analysis of the E2 Genes of Wildtype and Neuroattenuated Mutants of MHV-4 Reveals a Hypervariable Domain

  • Suezanne E. Parker
  • Michael J. Buchmeier
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

Murine hepatitis virus 4 (MHV-4) is a neurotropic Coronavirus (1–4). Infection of the CNS in susceptible mice strains results in a fatal encephalitis with destruction of neurons accompanied by demyelination. The few mice that survive the acute infection develop a chronic demyelinating disease characterized by episodes of demyelination followed by remyelination (2,5). The extensive white matter disease is believed to arise as the consequence of viral infection and destruction of oligodendrocytes (2,3,6).

Keywords

Mouse Hepatitis Virus Fatal Encephalitis Susceptible Mouse Strain Hepatitis Virus Type Chronic Demyelinating Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.P. Weiner, Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus), Arch. Neurol. 28:298 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    P.W. Lampert, J.K. Sims, and A.J. Kniazeff, Mechanism of demyelination in JHM virus encephalomyelitis, Electron microscopic studies, Acta. Neuropathol. 24:76 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    M.V. Haspel, P.W. Lampert, and M.B.A. Oldstone, Temperature sensitive mutants of mouse hepatitis virus produce a high incidence of demyelination, Proc. Natl. Acad. Sci. USA 75:4033 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Wege, S. Siddel, and V. ter Meulen, The biology and pathogenesis of coronaviruses, Curr. Top. Microbiol. Immunol. 99:165 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    R.L. Knobler, P.N. Tunison, P.W. Lampert, and M.B.A. Oldstone, Selected mutants of mouse hepatitis virus type 4 (JHM strain) induce different CNS diseases, Am. J. Pathol. 109:157 (1982).PubMedGoogle Scholar
  6. 6.
    M.E. Dubois-Dalcq, E.W. Doller, M.V. Haspel, and K.V. Holmes, Cell tropism and expression of mouse hepatitis virus (MHV) in mouse spinal cord cultures, Virology119:317 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    L.S. Sturman, K.V. Holmes, and J. Behnke, Isolation of Coronavirus envelope glycoproteins and interaction with the viral nucleocapsid, J. Virol. 33:449 (1980).PubMedGoogle Scholar
  8. 8.
    S. Siddel, H. Wege, and V.der Meulen, The structure and replication of coronaviruses, Curr. Top. Microbiol. Immunol. 99:131 (1982).CrossRefGoogle Scholar
  9. 9.
    L.S. Sturman, CS. Ricard, and K.V. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine Coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments, J. Virol. 56:904 (1985).PubMedGoogle Scholar
  10. 10.
    A.R. Collins, R.L. Knobler, H. Powell, and M.J. Buchmeier, Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion, Virology 119:358 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    P.J. Talbot, A.A. Salmi, R.L. Knobler, and M.J. Buchmeier, Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): Correlation with biological activities, Virology132:250 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Wege, R. Dorries, and H. Wege, Hybridoma antibodies to the murine Coronavirus JHM: Characterization of epitopes on the peplomer protein (E2), J. Gen. Virol. 65:1931 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    M.J. Buchmeier, H.A. Lewicki, P.J. Talbot, and R.L. Knobler, Murine hepatitis virus-4 (strain JHM)-induced neurological disease is modulated in vivo by monoclonal antibody, Virology 132:261 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    R.G. Dalziel, P.W. Lampert, P.J. Talbot, and M.J. Buchmeier, Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence, J. Virol. 59:463 (1986).PubMedGoogle Scholar
  15. 15.
    J.O. Fleming, M.D. Trousdale, F.A.K. El-Zaatari, S.A. Stohlman, and L.P. Weiner, Pathogenicity of antigenic variants of murine Coronavirus JHM selected with monoclonal antibodies, J. Virol. 58:869 (1986).PubMedGoogle Scholar
  16. 16.
    H. Wege, J. Winter, and R. Meyermann, The peplomer protein E2 of Coronavirus JHM as a determinant of neurovirulence: Definition of critical epitopes by variant analysis, J. Gen. Virol. 69:87 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    T.M. Gallagher, S.E. Parker, and M.J. Buchmeier, Neutralization resistant variants of a neurotropic coronavirus are generated by deletions within the amino terminal portion of the E2 spike glycoprotein, J. Virol, submitted (1989).Google Scholar
  18. 18.
    F. Taguchi and J.O. Fleming, Comparison of six different murine Coronavirus JHM variants by monoclonal antibodies against the E2 glycoprotein, Virology 169:233 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    P.H. Hamlyn, M.J. Gait, and C. Milstein, Complete sequence of an immunoglobulin mRNA using specific priming and the dideoxynucleotide method of RNA sequencing, Nuc. Acids Res. 9:4485 (1981).CrossRefGoogle Scholar
  20. 20.
    F. Sanger, S. Nicklen, and A.R. Coulson, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. USA 74:5463 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    J.M. Chirgwin, A.E. Przybyla, R.J. MacDonald, and W.J. Rutter, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18:5294 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Devereux, P. Haberli, and O. Smithies, A comprehensive set of sequence analysis programs for the VAX, Nuc. Acids Res. 12:387 (1984).CrossRefGoogle Scholar
  23. 23.
    D.M.A. Evans, P.D. Minor, G.S. Schild, and J.V. Almond, Critical role of an eight-amino acid of VP1 in neutralization of poliovirus type 3, Nature 304:459 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    I. Seif, P. Coulon, S.E. Rollin, and A. Flamand, Rabies virulence: Effect on pathogenicity and sequence characterization of rabies virus mutations effecting antigenic site III of the glycoprotein, J. Virol. 53:926 (1985).PubMedGoogle Scholar
  25. 25.
    J.W. Yewdell, A.J. Caton, and W. Gerhard, Selection of influenza A virus adsorptive mutant by growth in the presence of a mixture of monoclonal anti-hemagglutinin antibodies, J. Virol. 57:623 (1986).PubMedGoogle Scholar
  26. 26.
    R. Bassel-Duby, D.R. Spriggs, K.L. Tyler, and B.N. Fields, Identification of attenuating mutations on the reovirus type 31 double-stranded RNA segment with a rapid sequencing technique, J. Virol. 60:64 (1986).PubMedGoogle Scholar
  27. 27.
    S.D. Thompson and A. Portner, Localization of functional sites on the hemagglutinin-neuraminidase glycoprotein of Sendai virus by sequence analysis of antigenic and temperature-sensitive mutants, Virology 160:1 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    L. Luo, Y. Li, R.M. Snyder, and R.R. Wagner, Point mutations in glycoprotein gene of vesicular stomatitis virus (New Jersey serotype) selects resistance to neutralization by epitope-specific monoclonal antibodies, Virology 163:341 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    I. Schmidt, M. Skinner, and S. Siddel, Nucleotide sequence of the gene encoding the surface projection glycoprotein of Coronavirus MHV-JHM, J. Gen. Virol. 68:47 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Luytjes, L.S. Sturman, P.J. Bredenbeek, J. Charite, B.A.M. van der Zeijst, M.C. Horzinek, and W.J.M. Spaan, Primary structure of the glycoprotein E2 of Coronavirus MHV-A59 and identification of the trypsin cleavage site, Virology 161:479 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    V.L. Morris, C. Tieszer, J. Mackinnon, and D. Percy, Characterization of Coronavirus JHM variants isolated from Wistar Furth rats with a viral induced demyelinating disease, Virology 169:127 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    F. Taguchi, S.G. Siddel, H. Wege, and V. ter Meulen, Characterization of a variant virus selected in rat brains after infection by Coronavirus mouse hepatitis virus JHM, J. Virol. 54:429 (1985).PubMedGoogle Scholar
  33. 33.
    F. Taguchi, P.T. Massa, and V. ter Meulen, Characterization of a variant virus isolated from neural cell culture after infection of mouse Coronavirus JHMV, Virology 155:267 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    M.M.C. Lai, R.S. Baric, S. Makino, J.G. Keck, J. Egberg, J.L. Leibowitz, and S.A. Stohlman, Recombination between nonsegmented RNA genomes of murine coronaviruses, J. Virol. 56:449 (1985).PubMedGoogle Scholar
  35. 35.
    S. Makino, J.G. Keck, S.A. Stohlman, and M.M.C. Lai, High frequency of RNA recombination of murine coronaviruses, J. Virol. 57:729 (1986).PubMedGoogle Scholar
  36. 36.
    J.G. Keck, G.K. Matsushima, S. Makino, J.O. Fleming, D.M. Vannier, S.A. Stohlman, and M.M.C. Lai, In vivoRNA-RNA recombination of Coronavirus in mouse brain, J. Virol. 62:1810 (1988).PubMedGoogle Scholar
  37. 37.
    R.S. Baric, C.-K. Chien, S.A. Stohlman, and M.M.C. Lai, Analysis of intracellular small RNAs of mouse hepatitis virus: Evidence for discontinuous transcription, Virology 156:342 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    G. von Heijne, A new method for predicting signal sequence cleavage sites, Nuc. Acids Res. 14:4683 (1986).CrossRefGoogle Scholar
  39. 39.
    J.K. Fazakerley and A.M. Ross, Computer analysis suggests a role for signal sequences in processing polyproteins of enveloped RNA viruses and as a mechanism of viral fusion, Virus Genes 2:219 (1989).CrossRefGoogle Scholar
  40. 40.
    J. Kyte and R.F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Suezanne E. Parker
    • 1
  • Michael J. Buchmeier
    • 1
  1. 1.Department of NeuropharmacologyScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations