Skip to main content

Pro- and Anti-Oxidant Factors in Rat lung Cytosol

  • Chapter
Antioxidants in Therapy and Preventive Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 264))

Abstract

During the process of inflammation oxygen radicals are produced by phagocytic cells like neutrophils, eosinophils, monocytes and macrophages. Little is known about the effects of oxygen radicals on lung tissue in inflammatory diseases such as asthma1. Activated phagocytes release Superoxide anions, synthesized by NADPH oxidase which is located in the cellular membrane. Superoxide anions dismutate to hydrogen peroxide enzymatically (superoxide dismutase) or non-enzymatically. These superoxide anions and hydrogen peroxide together form very reactive oxygen species, namely the hydroxyl radical and singlet oxygen. In these reactions iron plays a catalytic role2. Oxygen metabolites cause DNA strand breaks, protein destruction (particularly sulfhydryl groups are sensitive to oxidative stress) and lipid peroxidation. The lipid peroxidation reaction products are very toxic too and cause DNA and protein damage as well3,4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PJ. Barnes, K.F. Chung, and C.P. Page, Inflammatory mediators and asthma, Pharmacol Rev. 40:49 (1988).

    PubMed  CAS  Google Scholar 

  2. D. Roos, and R.S. Weening, Defects of oxidative killing of micro-organisms by phagocytic leukocytes, in: Oxygen Free Radicals and Tissue Damage, Ciba Foundation Symposium 65, Exerpta Medica, Amsterdam (1979).

    Google Scholar 

  3. C.E. Vaca, J. Wilhelm, and M. Harms-Ringdahl, Interaction of lipid peroxidation products with DNA, Mutation Res. 195:137 (1988).

    PubMed  CAS  Google Scholar 

  4. R. Leurs, B. Rademaker, K. Kramer, H. Timmerman, and A. Bast, The effects of 4-hydroxy-2,3-trans-nonenal on ß-adrenoceptors of rat lung membranes, Chem.-Biol. Interactions 59:211 (1986).

    Article  CAS  Google Scholar 

  5. K. Kramer, C.J.A. Doelman, H. Timmerman, and A. Bast, A disbalance between beta-adrenergic and muscarinic responses caused by hydrogen peroxide in rat airways in vitro, Biochem. Biophys. Res. Comm, 145:337 (1987).

    Google Scholar 

  6. N. Ben-Arie, C. Gileadi, and M. Schramm, Interaction of the beta-adrenergic receptor with Gs following delipidation, Eur. J. Biochem. 176:649 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. A. Achari, D. Scott, P. Barlow et al., Facing up to membranes: structural function relationships in phospholipases, in Cold Spring Harbor Symposia on Quantitive Biology, Vol LII (1987).

    Google Scholar 

  8. C.J.A. Doelman, K. Kramer, H. Timmerman, and A. Bast, Vitamin E and selenium regulate balance between ß-adrenergic and muscarinic responses in rat lungs,FEBS Lett. 233:427 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. R. Anderson, A.J. Theron, and G.J. Ras, Ascorbic acid neutralizes reactive oxidants released by hyperactive phagocytes from cigarette smokers, Lung 166:149 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. H. Wefers, and H. Sies, The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E, Eur. J. Biochem. 174:353 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. C.G. Ramell, B. Cunliffe, and A.J. Kieboom, Determination of alpha-tocopherol in biological specimens by high-performance liquid chromatography, J. Liq. Chromatogr. 6:1123 (1983).

    Article  Google Scholar 

  12. S.K. Jagota, and H.M. Dani, A new colorimetric technique for the estimation of vitamin C using folin phenol reagent, Anal. Biochem. 127:178 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. O.W. Griffith, Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal. Biochem. 106:207 (1988).

    Article  Google Scholar 

  14. P. E. Brumby, and V. Massey, Determination of nonheme iron, total iron and copper, J. Biol. Chem. 229:763 (1957).

    Google Scholar 

  15. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248 (1976).

    Article  PubMed  CAS  Google Scholar 

  16. A. Wendel, Glutathione peroxidase, Methods in Enzymol. 77:325 (1981).

    Article  CAS  Google Scholar 

  17. D.J. Worthington, and M.A. Rosemeyer, Human glutathione reductase: purification of the crystalline enzyme from erythrocytes, Eur. J. Biochem. 48:167 (1974).

    Article  PubMed  CAS  Google Scholar 

  18. J.M. McCord, and I. Fridovich, Superoxide dismutase, J. Biol. Chem. 244:6049 (1969).

    PubMed  CAS  Google Scholar 

  19. G.R.M.M. Haenen, and A. Bast, Protection against lipid peroxidation by a microsomal glutathione-dependent labile factor, FEBS Lett. 159:24 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. M.G. Mustafa, and D.F. Tierney, Biochemical and metabolic changes in the lung with oxygen, ozone, and nitrogen dioxide toxicity, Am. Rev. Resp. Dis. 118:1061 (1978).

    PubMed  CAS  Google Scholar 

  21. J.R. Wright, H.D. Colby, and P.R. Miles, Cytosolic factors which affect microsomal lipid peroxidation in lung and liver, Arch. Biochem. Biophys. 206:296 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. J.R. Wright, H.D. Colby, and P.R. Miles, Lipid peroxidation in guinea pig lung microsomes, Biochim. Biophys. Acta 619:374 (1980).

    PubMed  CAS  Google Scholar 

  23. G. Minotti, and S.D. Aust, The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide, J. Biol. Chem. 262:1098 (1987).

    PubMed  CAS  Google Scholar 

  24. J.M. Braughler, R.L. Chase, and J.F. Pregenzer, Stimulation and inhibition of iron-dependent lipid peroxidation by desferrioxamine, Biochem. Biophys. Res. Comm. 153:933 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Doelman, C.J.A., Bast, A. (1990). Pro- and Anti-Oxidant Factors in Rat lung Cytosol. In: Emerit, I., Packer, L., Auclair, C. (eds) Antioxidants in Therapy and Preventive Medicine. Advances in Experimental Medicine and Biology, vol 264. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5730-8_71

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5730-8_71

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5732-2

  • Online ISBN: 978-1-4684-5730-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics