Insulin-Like Growth Factor Receptors in the Central Nervous System: Phosphorylation Events and Cellular Mediators of Biological Function

  • Brian A. Masters
  • Joshua Shemer
  • Derek LeRoith
  • Mohan K. Raizada


A complex pattern of growth and development in the nervous system would seem inherent in consideration of its morphological design for control of physiological processes and psychological phenomena. Yet in spite of this tangled design it would appear reasonable that certain basics tenets must be preserved in development and growth in the cellular world. Using such reasoning, the complex mechanisms responsible for growth and development in the nervous system have begun to acquire a very rudimentary definition. It has become increasingly apparent that a functional family of peptides termed growth factors are basic to the regulation of growth and development in peripheral cell populations (Daughaday, 1989). Recent research addressing nervous system growth and development points at these same peptide factors as important determinants in the generation and maintenance of the distinct cell types that comprise the brain, peripheral nerves, and organs of neural ectodermal origin.


Nerve Growth Factor Insulin Receptor Neurite Outgrowth Phorbol Ester Tyrosine Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamo, M., Werner, H., Famsworth, W., Roberts, C.T., Raizada, M.K, LeRoith, D. (1988). Dexamethasone reduced steady-state insulin-like growth factor messenger ribonucleic acid levels in rat neuronal and glial cells in culture. Endocrinology 123:2526.CrossRefGoogle Scholar
  2. Aizenman, Y., de Vellis, J. (1987). Brain neurons develop in a serum and glial free environment: Effects of transferrin, insulin, insulin-like growth factor 1 and thyroid hormone on neuronal survival, growth and differentiation. Brain Res. 406:32.PubMedCrossRefGoogle Scholar
  3. Aletta, J.M., Lewis, S.A., Cowan, N.J., Greene, LA. (1988). Nerve growth factor regulates both the phosphorylation and steady-state levels of microtubule-associated protein 1.2 (MAP 1.2). J. Cell Biol. 106:1573.PubMedCrossRefGoogle Scholar
  4. Alzmann, G., Honegger, P., Guntert, B., Matthieu, J.M. (1984). Brain cell aggregates in culture: Effect of T3 and BGH (bovine growth hormone) on myelination. Trans. Am. Soc. Neurochem. 15:258 (abstr. #354).Google Scholar
  5. Ballotti, R., Nielsen, F.C., Pringle, N., Kowalski, A., Ricardson, W.D., Van Obberghen, E., Gammeltoft, S. (1987). Insulin-like growth factor 1 in cultured astrocytes: Expression of the gene, and receptor tyrosine kinase. EMBO J. 6:3633.PubMedGoogle Scholar
  6. Baskin, D.G., Woods, S.C., West, D.B., van Houten, M., Posner, B.I., Dorsa, D.M., Porte, Jr., D. (1983). Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinology 113:1818.PubMedCrossRefGoogle Scholar
  7. Bassas, L., De Pablo, F., Lesniak, M., Roth, J. (1985). Ontogeny of receptors for insulin-like peptides in chick embryo tissues: Early dominance of insulin-like growth factor over insulin receptors in brain. Endocrinology 117:2321.PubMedCrossRefGoogle Scholar
  8. Beguinot, F., Smith, R.J. (1987). Insulin and IGFI stimulate phosphorylation of a differentiation-dependent 175,000 Mr protein in L6 skeletal muscle cells. Diabetes 36 (Suppl. 1):78A (abstr. #312).Google Scholar
  9. Berelowitz, M., Szabo, M., Frohman, L., Firestone, S., Chu, L., Hintz, R. (1981). Somatomedin-C mediates growth hormone negative feedback by effects on both the hypothalamus and the pituitary. Science 212:1279.PubMedCrossRefGoogle Scholar
  10. Black, M.M., Aletta, J.M., Greene, L.A. (1986). Regulation of microtubule composition and stability during nerve growth factor-promoted neurite outgrowth. J. Cell Biol. 103:545.PubMedCrossRefGoogle Scholar
  11. Bohannon, N.J., Figlewicz, D.P., Corp, E.S., Wilcox, B.J., Porte, Jr., D., Baskin, D.G. (1986). Identification of binding sites for an insulin-like growth factor 1 (IGF-1) in the median eminence of the rat brain by quantitative autoradiography. Endocrinology 119:943.PubMedCrossRefGoogle Scholar
  12. Bohannon, N.J., Corp, E.S., Wilcox, B.J., Figlewicz, D.P., Dorsa, D.M., Baskin, D.G. (1988a). Characterization of insulin-like growth factor 1 receptors in the median eminence of the brain and their modulation by food restriction. Endocrinology 122:1940.PubMedCrossRefGoogle Scholar
  13. Bohannon, N.J., Corp, E.S., Wilcox, B.J., Figlewicz, D.P., Dorsa, D.M., Baskin, D.G. (1988b). Localization of binding sites for insulin-like growth factor 1 (IGF-1) in the rat brain by quantitative autoradiography. Brain Res. 444:205.PubMedCrossRefGoogle Scholar
  14. Boyd, F.T., Clarke, D.W., Muther, T.F., Raizada, M.K. (1985). Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J. Biol. Chem. 260:15880.PubMedGoogle Scholar
  15. Brown, A.L., Graham, D.E., Nissley, S.P., Hill, D.J., Strain, A.J., Rechler, M.M. (1986). Developmental regulation of insulin-like growth factor 2 mRNA in different rat tissues. J. Biol. Chem. 261:13144.PubMedGoogle Scholar
  16. Budd, G.C., Pansky, B., Cordell, B. (1986). Detection of insulin synthesis in mammalian anterior pituitary cells by immunohistochemistry and in situ RNA-DNA hybridization. J. Histochem. Cytochem. 34:673.PubMedCrossRefGoogle Scholar
  17. Burgess, S., Jacobs, S., Cuatrecasas, P., Sahyoun, N. (1987). Characterization of a neuronal subtype of insulin-like growth factor 1 receptor. J. Biol. Chem. 262:1618.PubMedGoogle Scholar
  18. Chou, C.K., Dull, T.J., Russell, D.S., Gherzi, R., Lebwohl, D., Ullrich, A., Rosen, C.M. (1987). Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J. Biol. Chem. 262:1842.PubMedGoogle Scholar
  19. Clarke, D.W., Boyd, Jr., F.T., Kappy, M.S., Raizada, M.K. (1984). Insulin binds to specific receptors and stimulates 2-deoxyglucose uptake in cultured glial cells in rat brain. J. Biol. Chem. 259:11672.PubMedGoogle Scholar
  20. Clarke, D.W., Poulakos, J.J., Mudd, L.M., Raizada, M.K., Cooper, D.L (1987). Evidence for central nervous system insulin synthesis. In: Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System, Raizada, M.K., Phillips, M.I., and LeRoith, D., eds., Plenum Press, New York, p. 121.CrossRefGoogle Scholar
  21. Coimbra, C., Migliorini, R.H. (1986). Insulin-sensitive glucoreceptors in rat preoptic area that regulate FFA mobilization. Am. J. Physiol. 251:E703.PubMedGoogle Scholar
  22. Daughaday, W.H. (1977). Hormonal regulation of growth by somatomedin and other growth factors. Clin. Endocrinol. Metab. 6:117.PubMedCrossRefGoogle Scholar
  23. Daughaday, W.H. (1989). Somatomedins: A new look at old questions. In: Molecular and Cellular Biology of Insulin-like Growth Factors and Their Receptors, D. LeRoith and M. Raizada, eds., Plenum Press, New York.Google Scholar
  24. DiCicco-Bloom, E., Black, I.B. (1988). Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proc. Natl. Acad. Sci. USA 85:4066.PubMedCrossRefGoogle Scholar
  25. Duffy, K.R., Pardridge, W.M., Rosenfeld, R.G. (1988). Human blood-brain barrier insulin-like growth factor receptor. Metab. 37:136.CrossRefGoogle Scholar
  26. Ebina, Y., Leland, E., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J., Masiarz, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., Rutter, W.J. (1985). The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling. Cell 40:747.PubMedCrossRefGoogle Scholar
  27. Ebina, Y., Araki, E., Taira, M., Shimada, F., Mori, M., Craik, C.S., Siddle, K., Pierce, S.B., Roth, R.A., Rutter, W. (1987). Replacement of lysine residue 1030 in putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity. Proc. Natl. Acad. Sci. USA 84:704.PubMedCrossRefGoogle Scholar
  28. Frank, H.J.L., Pardridge, W.M., Morris, W.L., Rosenfeld, R.G., Choi, T.B. (1986). Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes 35:654.PubMedCrossRefGoogle Scholar
  29. Gammeltoft, S., Haselbacher, G.K., Humbel, R.E., Fehlmann, M., Van Obberghen, E. (1985). Two types of receptor for insulin-like growth factors in mammalian brain. EMBO J. 4:3407.PubMedGoogle Scholar
  30. Gibbs, M.E., Allard, W.J., Lienhard, G.E. (1986). The glucose transporter in 3T3-L1 adipocytes is phosphorylated in response to phorbol ester but not in response to insulin. J. Biol. Chem. 261:16597.PubMedGoogle Scholar
  31. Goodyer, C.G., De Stéphano, L, Lai, W.H., Guyda, H.J., Posner, B.L (1984). Characterization of insulin-like growth factor receptors in rat anterior pituitary, hypothalamus, and brain. Endocrinology 114:1187.PubMedCrossRefGoogle Scholar
  32. Guler, H.-P., Zapf, J., Scheiwiller, E., Froesch, E. (1988). Recombinant human insulin-like growth factor 1 stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc. Natl. Acad. Sci. USA 85:4889.PubMedCrossRefGoogle Scholar
  33. Han, V.K.M., Lund, P.K., Lee, D.C., D’Ercole, A.J. (1988). Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in human fetus: Identification, characterization, and tissue distribution. J. Clin. Endocrinol. Metab. 66:422.PubMedCrossRefGoogle Scholar
  34. Häring, H.U., White, M.F., Machicao, F., Ermel, B., Schleicher, E., Obermaier, B. (1987). Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells. Proc. Natl. Acad. Sci. USA 84:113.PubMedCrossRefGoogle Scholar
  35. Haselbacher, G.K., Schway, M.E, Pasi, A., Humbel, R.E. (1985). Insulin-like growth factor 2 (IGF2) in human brain: Regional distribution of IGF2 and of higher molecular mass forms. Proc. Natl. Acad. Sci. USA 82:2153.PubMedCrossRefGoogle Scholar
  36. Heidenreich, K.A., Freidenberg, G.R., Figlewicz, D.P., Gilmore, P.R. (1986). Evidence for a subtype of insulin-like growth factor 1 receptor in brain. Regl. Pep. 15:301.CrossRefGoogle Scholar
  37. Hill, J.M., Lesniak, M.A., Rojeski, M., Pert, C.B., Roth, J. (1987). Receptors for insulin and insulin-related peptides in the CNS: Studies of localization in rat brain. In: Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System, Raizada, M.K., Phillips, M.I., and LeRoith, D., eds., Plenum Press, New York, p. 261.CrossRefGoogle Scholar
  38. Hynes, M.A., Brooks, P.J., Van Wyk, J.J., Lund, P.K. (1988). Insulin-like growth factor 2 messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain. Mol. Endocrinol. 2:47.PubMedCrossRefGoogle Scholar
  39. Ishii, D.N., Recio-Pinto, E. (1987). Role of insulin, insulin-like growth factors and nerve growth factor in neurite formation. In: Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System, Raizada, M.K., Phillips, M.I., and LeRoith, D., eds., Plenum Press, New York, p. 315.CrossRefGoogle Scholar
  40. Izumi, T., White, M.F., Kadowaki, T., Takaku, F., Akanuma, Y., Kasuga, M. (1987). Insulin-like growth factor 1 rapidly stimulates tyrosine phosphorylation of a Mr 185,000 protein in intact cells. J. Biol. Chem. 262:1282.PubMedGoogle Scholar
  41. Jacobs, S., Kull, F.C., Earp, H.S., Svoboda, M.E., Van Wyk, J.J., Cuatrecasas, P. (1983). Somatomedin-C stimulates the phosphorylation of the β-subunit of its own receptor. J. Biol. hem. 258:9581.Google Scholar
  42. Kadowaki, T., Koyasu, S., Nishida, E., Tobe, K., Izumi, T., Takaku, F., Sakai, H., Yahara, I., Kasuga, M. (1987). Tyrosine phosphorylation of common and specific sets of cellular proteins rapidly induced by insulin, insulin-like growth factor 1, and epidermal growth factor in intact cells. J. Biol. Chem. 262:7342.PubMedGoogle Scholar
  43. Kwok, R.P.S., Juorio, A.V. (1987). Facilitating effect of insulin on brain 5-hydroxytryptamine metabolism. Endocrinology 45:267.Google Scholar
  44. Lenoir, D., Honegger, P. (1983). Insulin-like growth factor 1 (IGF1) stimulates DNA synthesis in fetal rat brain cell cultures. Dev. Brain Research 7:380.Google Scholar
  45. Lowe, Jr., W., LeRoith, D. (1986). Tyrosine kinase activity of brain insulin and IGF-1 receptors. Biochem. Biophys. Res. Comm. 134:532.PubMedCrossRefGoogle Scholar
  46. Lowe, Jr., W.L., Boyd, F.T., Clarke, D.W., Raizada, M.K., Hart, C., LeRoith, D. (1986). Development of brain insulin receptors: Structural and functional studies of insulin receptors from whole brain and primary cell cultures. Endocrinology 119:25.PubMedCrossRefGoogle Scholar
  47. Lund, P.K., Moats-Staats, B.M., Hynes, M.A., Simmons, J.G., Jansen, M., D’Ercole, A.J., Van Wyk, J.J. (1986). Somatomedin C/insulin-like growth factor I and insulin-like growth factor II mRNAs in rat fetal and adult tissues. J. Biol. Chem. 261:14539.PubMedGoogle Scholar
  48. Machicao, F., Häring, H., White, M.F., Carrascosa, J.M., Obermaier, B., Wieland, O.H. (1987). An Mr 180,000 protein is an endogenous substrate for the insulin-receptor-associated tyrosine kinase in human placenta. Biochem. J. 243:797.PubMedGoogle Scholar
  49. Madoff, D.H., Martensen, T.M., Lane, M.D. (1988). Insulin and insulin-like growth factor 1 stimulate the phosphorylation on tyrosine of a 160 kDa cytosolic protein in 3T3-L1 adipocytes. Biochem. J. 252:7.PubMedGoogle Scholar
  50. Massagué, J., Czech, M. (1982). The subunit structures of two distinct receptors for insulin-line growth factors 1 and 2 and their relationship to insulin receptor. J. Biol. Chem. 257:5038.PubMedGoogle Scholar
  51. Mattsson, M.E.K., Enberg, G., Ruusala, A.-I., Hall, K., Pahlman, S. (1986). Mitogenic response of human SH-SY5Y neuroblastoma cells to insulin-like growth factor I and II is dependent on the stage of differentiation. J. Biol. Chem. 102:1949.Google Scholar
  52. McDonald, R.G., Pfeffer, S.R., Coussens, L., Tepper, M.A., Brocklebank, C.M., Mole, J.E., Anderson, J.K., Chen, E., Czech, M.P., Ullrich, A. (1988). A single receptor binds both insulin-like growth factor 2 and mannose-6-phosphate. Science 239:1134.CrossRefGoogle Scholar
  53. McElduff, A., Poronnik, P., Baxter, R.C. (1987). The insulin-like growth factor 2 (IGF2) receptor from rat brain is of lower apparent molecular weight than the IGF2 receptor from rat liver. Endocrinology 121:1306.PubMedCrossRefGoogle Scholar
  54. McElduff, A., Poronnik, P., Baxter, R.C., Williams, P. (1988). A comparison of the insulin and insulinlike growth factor 1 receptors from rat brain and liver. Endocrinology 122:1933.PubMedCrossRefGoogle Scholar
  55. McMorris, F.A. (1983). Cyclic-AMP induction of the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase in rat oligodendrocytes. J. Neurochem. 41:508.CrossRefGoogle Scholar
  56. McMorris, F.A., Smith, T.M., DeSalvo, S., Furlanetto, R.W. (1986). Insulin-like growth factor 1/ somatomedin C: A potent inducer of oligodendrocyte development. Proc. Natl. Acad. Sci. USA 83:822.PubMedCrossRefGoogle Scholar
  57. Mendelsohn, L. (1987). Visualization of IGF-2 receptors in rat brain. In: Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System, Raizada, M.K., Phillips, M.I., and LeRoith, D., eds., Plenum Press, New York, p. 269.CrossRefGoogle Scholar
  58. Mill, J.F., Chao, M.V., Ishii, D.N. (1985). Insulin, insulin-like growth factor 2, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proc. Natl. Acad. Sci. USA 82:7126.PubMedCrossRefGoogle Scholar
  59. Morgan, D.O., Roth, R.A. (1987). Acute insulin action requires insulin receptor kinase activity: Introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin. Proc. Natl. Acad. Sci. USA 84:41.PubMedCrossRefGoogle Scholar
  60. Morgan D.O., Jarnagin, K., Roth, R. (1986). Purification and characterization of the receptor for insulinlike growth factor 1. Biochemistry 25:5560.PubMedCrossRefGoogle Scholar
  61. Morgan, D.O., Edman, J.C., Standring, D.N., Fried, V.A., Smith, M.C., Roth, R.A., Rutter, W.J. (1987). Insulin-like growth factor 2 receptor as a multifunctional binding protein. Nature (London) 329:301.CrossRefGoogle Scholar
  62. Mudd, L.M., Raizada, M.K. (1989). Regulation of growth factor receptors by protein kinase C In: Molecular and Cellular Biology of Insulin-like Growth Factors and Their Receptors, D. LeRoith and M. Raizada, eds., Plenum Press, New York.Google Scholar
  63. Murphy, L.J., Bell, G.I., Friesen, H.G. (1987). Tissue distribution of insulin-like growth factor 1 and 2 messenger ribonucleic acid in the adult rat. Endocrinology 120:1279.PubMedCrossRefGoogle Scholar
  64. Nilsson, L., Sara, V.R., Nordberg, A. (1988). Insulin-like growth factor 1 stimulates the release of acetylcholine from rat cortical slices. Neurosci. Lett. 88:221.PubMedCrossRefGoogle Scholar
  65. Nishizuka, Y. (1986). Studies and perspectives of protein kinase C Science 233:305.PubMedCrossRefGoogle Scholar
  66. Noguchi, T., Sugisaki, T., Tsukada, Y. (1982a). Postnatal actions of growth and thyroid hormones on the retarded cerebral myelinogenesis of Snell dwarf mice (dw). J. Neurochem. 38:257.PubMedCrossRefGoogle Scholar
  67. Noguchi, T., Sugisaki, T., Tsukada, Y. (1982b). Factors contributing to the poor myelination in the brain of the Snell dwarf mouse. J. Neurochem. 39:1693.PubMedCrossRefGoogle Scholar
  68. Noguchi, T., Kurata, L.M., Sugisaki, T. (1987). Presence of somatomedin-C-immunoreactive substances in the central nervous system: Immunochemical mapping studies. Neuroendocrinology 46:277.PubMedCrossRefGoogle Scholar
  69. Novak-Hofer, I., Kung, W., Eppenberger, U. (1988). Role of extracellular electrolytes in activation of ribosomal protein S6 kinase by epidermal growth factor, insulin-like growth factor, and insulin in ZR-75–1 cells. J. Cell Biol. 106:395.PubMedCrossRefGoogle Scholar
  70. Ocrant, I., Valentino, K.L., Eng, L.F., Hintz, R.L., Wilson, D.M., Rosenfeld, R.G. (1988). Structural and immunohistochemical characterization of insulin-like growth factor 1 and 2 receptors in the murine nervous system. Endocrinology 123:1023.PubMedCrossRefGoogle Scholar
  71. Ota, A., Wilson, G.L., Spilberg, O., Pruss, R., LeRoith, D. (1988a). Functional insulin-like growth factor receptors are expressed by neural-derived continuous cell lines. Endocrinology 122:145.PubMedCrossRefGoogle Scholar
  72. Ota, A., Wilson, G.L., LeRoith, D. (1988b). Insulin-like growth factor I receptors on mouse neuroblastoma cells. Two β-subunits are derived from differences in glycosylation. Eur. J. Biochem. 174:521.PubMedCrossRefGoogle Scholar
  73. Pardridge, W.F., Eisenberg, J., Young, J. (1985). Human blood brain barrier insulin receptor. J. Neurochem. 44:1771.PubMedCrossRefGoogle Scholar
  74. Pelton, E.W., Grindeland, R.E., Young, E. (1977). Effects of immunologically induced growth hormone deficiency on myelinogenesis in developing rat cerebrum. Neurology 27:282.PubMedGoogle Scholar
  75. Perdue, J.F. (1984). Chemistry, structure, and function of insulin-like growth factors and their receptors. Can. J. Biochem. Ceil Biol. 62:1237.CrossRefGoogle Scholar
  76. Phillips, A.F., Persson, B., Hall, K., Lake, M., Skottner, A., Sanengen, T., Sara, V.R. (1988). The effects of biosynthetic insulin-like growth factor 1 supplementation on somatic growth, maturation, and erythropoiesis on the neonatal rat. Pediatr. Res. 23:298.Google Scholar
  77. Phillips, L.S., Vassilopoulou-Sellin, R. (1979). Nutritional regulation of somatomedin. Am. J. Clin. Nutr. 32:1082.PubMedGoogle Scholar
  78. Phillips, L.S., Vassilopoulou-Sellin, R. (1980). Medical progress: Somatomedins (first of two parts). N. Engl. J. Med. 302:371.PubMedCrossRefGoogle Scholar
  79. Phillips, L.S., Young, H.S. (1976). Nutrition and somatomedin. I. Effect of fasting and refeeding on serum somatomedin activity and cartilage growth activity in rats. Endocrinology 99:304.PubMedCrossRefGoogle Scholar
  80. Pierre, M., Toru-Delbauffe, D., Gavaret, J.M., Pomerance, M., Jacquerin, C. (1986). Activation of S6 kinase activity in astrocytes by insulin, somatomedin C and TPA. FEBS Lett. 206:162.PubMedCrossRefGoogle Scholar
  81. Puro, D.G., Agardh, E. (1984). Insulin-mediated regulation of neuronal maturation. Science 225:1170.PubMedCrossRefGoogle Scholar
  82. Raizada, M.K., Boyd, F.T., Clarke, D.W., LeRoith, D. (1987). Physiologically unique insulin receptors on neuronal cells. In: Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System, Raizada, M.K., Phillips, M.I., and LeRoith, D., eds., Plenum Press, New York, p. 191.CrossRefGoogle Scholar
  83. Ray, L.B., Sturgill, T.W. (1987). Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci. USA 84:1502.PubMedCrossRefGoogle Scholar
  84. Rechler, M.M., Nissley, S.P. (1985). The nature and regulation of the receptors for insulin-like growth factors. Ann. Rev. Physiol. 47:425.CrossRefGoogle Scholar
  85. Recio-Pinto, E., Ishii, D.N. (1984). Effects of insulin, insulin-like growth factor 2 and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res. 302:323.PubMedCrossRefGoogle Scholar
  86. Recio-Pinto, E., Rechler, M.M., Ishii, D.N. (1986). Effects on insulin-insulin-like growth factor II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J. Neurosci. 6:1211.PubMedGoogle Scholar
  87. Rinaudo, M.T., Curto, M., Bruno, R., Marino, C., Rossetti, V., Mostert, M. (1987). Evidence of an insulin generated pyruvate dehydrogenase stimulating factor in rat brain plasma membrane. Int. J. Biochem. 19:909.PubMedCrossRefGoogle Scholar
  88. Rosenfeld, R.G., Hoffman, A.R. (1987). Insulin-like growth factors and their receptors in the pituitary and hypothalamus. In: Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System, Raizada, M.K., Phillips, M.I., and LeRoith, D., eds., Plenum Press, New York, p. 277.CrossRefGoogle Scholar
  89. Rosenfeld, R.G., Pham, H., Keller, B.T., Borchardt, R.T., Pardridge, W.M. (1987). Demonstration and structural comparison of receptors for insulin-like growth factor-1 and -2 (IGF-1 and -2) in brain and blood-brain barrier. Biochem. Biophys. Res. Comm. 149:159.PubMedCrossRefGoogle Scholar
  90. Roth, R.A. (1988). Structure of the receptor for insulin-like growth factor 2: The puzzle amplified. Science 239:1269.PubMedCrossRefGoogle Scholar
  91. Roth, R.A., Stover, C., Hari, J., Morgan, D.O., Smith, M.C., Sara, V., Fried, V.A. (1987). Interactions of the receptor for insulin-like growth factor 2 with mannose-6-phosphate and antibodies to the mannose-6-phosphate receptor. Biochem. Biophys. Res. Comm. 149:600.PubMedCrossRefGoogle Scholar
  92. Rotwein, P., Burgess, S.K., Milbrandt, J.D., Krause, J.E. (1988). Differential expression of insulin-like growth factor genes in rat central nervous system. Proc. Natl. Acad. Sci. USA 85:265.PubMedCrossRefGoogle Scholar
  93. Rubin, J.B., Shia, M.A., Pilch, P.F. (1983). Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor 1. Nature (London) 305:438.CrossRefGoogle Scholar
  94. Sakaguchi, T., Bray, G.A. (1987). Intrahypothalamic injection of insulin decreases firing rate of sympathetic nerves. Proc. Natl. Acad. Sci. USA 84:2012.PubMedCrossRefGoogle Scholar
  95. Sara, V., Uvnas-Moberg, K., Uvnas, B., Hall, K., Wetterberg, L., Posslancec, B., Goiny, M. (1982). The distribution of somatomedins in the nervous system of the cat and their release following neural stimulation. Acta Physiol. Scand. 115:467.PubMedCrossRefGoogle Scholar
  96. Sara, V.R., Hall, K., Misake, M., Frylund, L., Christensen, N., Wetterberg, L (1983). Ontogenesis of somatomedin and insulin receptors in human fetus. J. Clin. Invest. 71:1084.PubMedCrossRefGoogle Scholar
  97. Schechter, R., Holtzclaw, L, Sadiq, F., Kahn, A., Devaskar, S. (1988). Insulin synthesis by isolated rabbit neurons. Endocrinology 123:505.PubMedCrossRefGoogle Scholar
  98. Schoenle, E., Zapf, J., Humbel, R., Froesch, E. (1982). IGF-1 stimulates growth in hypophysectomized rats. Nature 296:252.PubMedCrossRefGoogle Scholar
  99. Shemer, J., Raizada, M., Masters, B., Ota, A., LeRoith, D. (1987a). Insulin-like growth factor I receptors in neuronal and glial cells. Characterization and biological effects in primary culture. J. Biol. Chem. 262:7693.PubMedGoogle Scholar
  100. Shemer, J., Adamo, M., Wilson, G.L., Heffez, D., Zick, Y., LeRoith, D. (1987b). Insulin and insulin-like growth factor 1 stimulate a common endogenous phosphoprotein substrate (pp185) in intact neuroblastoma cells. J. Biol. Chem. 262:15476.PubMedGoogle Scholar
  101. Shemer, J., Adamo, M., Raizada, M.K., Heffez, D., Zick, Y., LeRoith, D. (1989). Insulin and insulin-like growth factor 1 (IGF-1) stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture. J. Mol. Neurosci., in press.Google Scholar
  102. Shiu, R.P.C., Paterson, J.A. (1988). Characterization of insulin-like growth factor 2 peptides secreted by expiants of neonatal brain and of adult pituitary of rats. Endocrinology 123:1456.PubMedCrossRefGoogle Scholar
  103. Sly, W.S., Fischer, H.D. (1982). The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes. J. Cell Biochem. 18:67.PubMedCrossRefGoogle Scholar
  104. Soares, M.B., Ishii, D.N., Efstratiadis, A. (1985). Developmental and tissue specific expression of a family of transcripts related to rat insulin-like growth factor II mRNA. Nuc. Acids Res. 13:1119.CrossRefGoogle Scholar
  105. Soares, M.B., Turken, A., Ishii, D.N., Mills, L, Episkopou, V., Cotter, S., Zeitlin, S., Efstratiadis, A. (1986). The rat insulin-like growth factor II gene: A single gene with two promoters expressing a multiscript family. J. Mol. Biol. 192:737.PubMedCrossRefGoogle Scholar
  106. Stein, L.J., Dorsa, D.M., Baskin, D.G., Figlewicz, D.P., Ikeda, H., Frankmann, S.P., Greenwood, M.R.C., Porte, Jr., D., Woods, S.P. (1983). Immunoreactive insulin levels are elevated in cerebrospinal fluid of genetically obese Zucker rats. Endocrinology 113:2299.PubMedCrossRefGoogle Scholar
  107. Strum, M.A., Conover, C.A., Pham, H., Rosenfeld, R.G. (1989). Insulin-like growth factor receptors and binding protein in rat neuroblastoma cells. Endocrinology 124:388.CrossRefGoogle Scholar
  108. Taylor, A.M., Dandona, P., Morrell, D.J., Preece, M.A.(1988). Insulin-like growth factor 1, protein kinase C., calcium and cyclic AMP: Partners in the regulation of chondrocyte mitogenesis and metabolism. FEBS Lett. 236:33.PubMedCrossRefGoogle Scholar
  109. Tong, P.Y., Tollefsen, S.E., Kornfeld, S. (1988). The cation-independent mannose-6-phosphate receptor binds insulin-like growth factor 2. J. Biol. Chem. 263:2585.PubMedGoogle Scholar
  110. Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., Ramachandran, J. (1985). Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature (London) 313:756.CrossRefGoogle Scholar
  111. Ullrich, A., Gray, A., Tarn, A.W., Yang-Feng, T., Tsubokawa, M., Collins, C, Henzel, W., LeBon, T., Kathuria, S., Chen, E., Jacobs, S., Francke, U., Ramachandran, J., Fujita-Yamaguchi, Y. (1986). Insulin-like growth factor 1 receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5:2503.PubMedGoogle Scholar
  112. Valentino, K.L., Pham, H., Ocrant, I., Rosenfeld, R.G. (1988). Distribution of insulin-like growth factor 2 receptor immunoreactivity in rat tissue. Endocrinology 122:2753.PubMedCrossRefGoogle Scholar
  113. Van der Pal, R.H.M., Koper, J.W., van Golde, L.M.G., Lopes-Cardozo, M. (1988). Effects of insulin and insulin-like growth factor 1 (IGF1) on oligodendrocyte-enriched glial cells. J. Neurosci. Res. 19:483.PubMedCrossRefGoogle Scholar
  114. Van Wyk, J.J. (1984). The somatomedins: Biological actions and physiological control mechanisms. In: Hormonal Proteins and Peptides, Li, C.H., ed., Academic Press, New York, p. 81.Google Scholar
  115. Verspohl, R.J., Maddux, B.A., Goldfine, I.D. (1988). Insulin and insulin-like growth factor I regulate the same biological functions in HEP-G2 cells via their own receptors. J. Clin. Endocrinol. Metab. 67:169.PubMedCrossRefGoogle Scholar
  116. Waheed, A., Brauike, T., Junghans, U., von Figura, K. (1988). Mannose-6-phosphate/insulin-like growth factor 2 receptor: The 2 types of ligands bind simultaneously to one receptor at different sites. Biochem. Biophys. Res. Comm. 152:1248.PubMedCrossRefGoogle Scholar
  117. White, M.F., Marion, R., Kahn, C.R. (1985). Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature (London) 318:183.CrossRefGoogle Scholar
  118. White, M.F., Stegmann, E.W., Dull, T.J., Ullrich, A., Kahn, C.R. (1987). Characterization of endogenous substrate of the insulin receptor in cultured cells. J. Biol. Chem. 262:9769.PubMedGoogle Scholar
  119. Wiggins, R.C (1982). Myelin development and nutritional insufficiency. Brain Res. Rev. 4:151.CrossRefGoogle Scholar
  120. Young III. W.S., (1986). Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8:93.PubMedCrossRefGoogle Scholar
  121. Zick, Y., Sasaki, N., Rees-Jones, R.W., Grunberger, G., Nissley, S.P., Rechler, M.M. (1984). Insulinlike growth factor 1 (IGF1) stimulates tyrosine kinase activity in purified receptors from a rat liver cell line. Biochem. Biophys. Res. Commun. 119:6.PubMedCrossRefGoogle Scholar
  122. Zick, Y., Sagi-Eisenberg, R., Pines, M., Gierschik, P., Spiegel, A.M. (1986). Multiple phosphorylation of oc subunit of transducin by the insulin receptor kinase and protein kinase C Proc. Natl. Acad. Sci. USA 83:9294.PubMedCrossRefGoogle Scholar
  123. Zick, Y., Spiegel, A.M., Sagi-Eisenberg, R. (1987). Insulin-like growth factor 1 receptors in retinal rod outer segments. J. Biol. Chem. 262:10259.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Brian A. Masters
    • 1
  • Joshua Shemer
    • 2
  • Derek LeRoith
    • 2
  • Mohan K. Raizada
    • 1
  1. 1.Department of PhysiologyUniversity of FloridaGainesvilleUSA
  2. 2.Section of Molecular and Cellular Physiology, Diabetes Branch, NIADDKNational Institutes of HealthBethesdaUSA

Personalised recommendations