Skip to main content

Role of Calcium Released from the Sarcoplasmic Reticulum of Smooth Muscle Cells as Induced by Inositol Phosphatides

  • Chapter
Calcium Protein Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 255))

Abstract

Phosphatidylinositol 4,5-bisphosphate (PI-P2), distributed at the sarcolemma in smooth muscles, as a phospholipid, is hydrolyzed into inositol 1,4,5-trisphosphate (below Ins-1,4,5-P3) and diacylglycerol (DG) by activations of each receptor through actions of GTP binding protein (Gprotein) and by those of phospholipase C. The latter is also synthesized from phosphatidyl inositide monophosphate (Berridge, 1984; Berridge and Irvine, 1984; Abdel-Latif, 1986). It is now clear that Ins-1,4,5-P3 releases Ca from the sarcoplasmic reticulum (SR) of smooth muscle cells and increases free Ca concentration in the cytosol, thereby initiating contraction (Streb et al., 1983; Suematsu et al., 1984; Somlyo et al., 1985; Yamamoto and van Breemen, 1985; Hashimoto et al., 1986; Sasaguri et al., 1985). DG with phosphatidylserine (PS) activates protein kinase C and phosphorylates the proteins required to regulate physiological functions in the cells (Nishizuka, 1984; 1986). In smooth muscles, 12-0-tetradecanoylphorbol-13-acetate (TPA), a phorbol ester and a substitute of DG, together with PS increases the Ca sensitivity of contractile proteins and enhances the mechanical response evoked by high K (below 59 mM) in intact smooth muscles and also by Ca (below 0.5 μM) in skinned muscle tissues (Itoh et al. 1987). TPA also inhibits the hydrolysis of PI-P2 triggered by agonists and reduces the synthesis of Ins-1,4,5-P3 (Itoh et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A.A., Akhtar, R.A. and Hawthorne, J.N., 1977, Acetylcholine increases the breakdown of triphosphainositide of rabbit iris muscle prelabelled with [32P] phosphate. Biochem. J., 162: 61–73

    PubMed  CAS  Google Scholar 

  • Adel-Latif, A.A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol. Rev. 38: 227–272

    Google Scholar 

  • Batty, I.R., Nahorski, S.R. and Irvine, R.F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232: 211–215

    PubMed  CAS  Google Scholar 

  • Benham, C.D. and Bolton, T.B., 1986, Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J. Physiol. 381:385–406

    PubMed  CAS  Google Scholar 

  • Benham, C.D., Bolton, T.B., Lang, R.J. and Takewaki, T., 1985, The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+-channels in arterial and intestinal smooth muscle cell membranes. Pflugers Arch. 403: 120–127

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360

    PubMed  CAS  Google Scholar 

  • Berridge, M.J. and Irvine, R.F., 1984, Inositol trisphosphate a novel second messenger in cellular signal transduction. Nature, 312:315–321

    Article  PubMed  CAS  Google Scholar 

  • Burgess, G.M., McKinney, J.S., Irvine, R.F. and Putney, J.W. Jr., 1985, Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-horrnone-activated cells. Biochem. J. 232:237–243

    PubMed  CAS  Google Scholar 

  • Downes, C.P. and Micheli, R.H. Inositol phosphlipid breakdown as a receptor-controlled generator of second messengers. In Molecular Mechanisms of Transmembrane Signalling. (ed. P. Cohen and M.D. Houslay) pp 3–56, Amsterdam, Elsevier.

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmam, B. and Sigworth, F.J., 1981, Improved Patch-Clamp Techniques for High-Resolution Current Recording from cells and Cell-Free Membrane Patches. Pflugers Arch. 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Hirata, M., Itoh, T., Kanmura, Y. and Kuriyama, H., 1986, Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J. Physiol. 370:605–618

    PubMed  CAS  Google Scholar 

  • Heslop, J.P., Irvine, R.F., Tashjian, Jr. A.H. and Berridge, M.J., 1985, Short communication inositol tetrakis-and pentakisphosphates in GH4 cells. J. Exp. Biol. 119:395–401

    PubMed  CAS  Google Scholar 

  • Higashida, H. and Brown, D.A., 1986a, Membrane current responses to intracellular injections of inositol 1,3,4-trisphosphate in NG 108-15 hybrid cells. FEBS letters 208:283–286

    Article  PubMed  CAS  Google Scholar 

  • Higashida, H. Brown, D.A., 1986b, Two polyphosphatide inositide metabolites control two K+ currents in a neuronal cell. Nature 323:333–335

    Article  PubMed  CAS  Google Scholar 

  • Hilgemann, D.W., Delay, M. and Langer, G.A., 1983, Activation-dependent cumulative depletions of extracellular free calcium in guinea pig atrium measured with antipyralazo III and te tramethylmurexide. Circ. Res. 53:779–793

    PubMed  CAS  Google Scholar 

  • Hirata, M., Suematsu, E., Hashimoto, T., Hamachi, T. and Koga, T., 1984, Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. Biochem. J. 223:229–236

    PubMed  CAS  Google Scholar 

  • Hokin, M.R. and Hokin, L.F., 1953, Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices. J. Biol. Chem. 203:967–977

    PubMed  CAS  Google Scholar 

  • Hunter, D.R., Haworth, R.A. and Berkoff, H.A., 1983, Modulation of cellular calcium stores in the perfused rat heart by isoproterenol and ryanodine. Circ. Res. 53:703–712

    PubMed  CAS  Google Scholar 

  • Hwang, K.S. and van Breemen, C., 1987, Ryanodine modulation of 45Ca efflnx and tension in rabbit aortic smooth muscle. Pflügers Arch. Eur. J. Physiol. 408:343–350

    Article  CAS  Google Scholar 

  • Inoue, R., Kitamura, K. and Kuriyama H., 1985, Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein. Pflügers Arch., 405: 173–179

    Article  PubMed  CAS  Google Scholar 

  • Inoue, R., Okabe, K., Kitamura, K. and Kuriyama, H., 1986, A newly identified Ca2+ dependent K+ channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein. Pflügers Arch., 406; 138–143

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R.F., Auggard, E.E., Letcher, A.J. and Downess, O.P., 1985, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem. J. 229 505–511

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., Letcher, A.J., Heslop, J.P. and Berridge, M.J., 1986a, The inositol tris/tetrakis phosphate pathway-demonstration of Ins(1,4,5)P3 3 kinase activity in animal tissues. Nature 320:631–634

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J. and Berridge M.J., 1986b, Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells. Biochem. J. 240: 301–304

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J. and Downes, C.P., 1984, Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223:237–243

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., and Moor, R.M., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem. J. 240:917–920

    PubMed  CAS  Google Scholar 

  • Irvine, R.F. and Moor, R.M., 1987, Inositol (1,3,4,5) tetrakisphosphate-induced activation of sea urchin inositol trisphosphate. Biochem. Biophys. Res. Commun. 146:284–290

    Article  PubMed  CAS  Google Scholar 

  • Ito, K., Takakura, S., Sato, K. and Sutko, J.L., 1986, Ryanodine inhibits the release of calcium from intracellular stores in guinea pig aortic smooth muscle. Circ. Res. 58:730–734

    PubMed  CAS  Google Scholar 

  • Itoh, T., Kubota, Y. and Kuriyama, H., 1988, Effects of a phorbol ester on acetylcholine-induced Ca2+ mobilization and contraction in the porcine coronary artery. J. Physiol. 397:401–419

    PubMed  CAS  Google Scholar 

  • Itoh, T., Kanmura, Y., Kuriyama, H. and Sumimoto, K., 1987, A phorbol ester has dual actions on the mechanical response in the rabbit mesenteric and porcine coronary arteries. J. Physiol. 375:515–534

    Google Scholar 

  • Joseph, S.K., Williams, R.J., Corkey, B.E., Matschinsky, F.M. and Williamson, J.R., 1984, The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells. J. Biol. Chem. 259:12952–12955

    PubMed  CAS  Google Scholar 

  • Klőckner, U. and Isenberg, G., 1985, Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflügers Arch., 405: 329–339

    Article  PubMed  Google Scholar 

  • Lindon, J.C., Baber, D.J., Farrant, R.D. and Williams, J. M., 1986, 1H, 13C and 31P n.m.r. spectra and molecular conformation of myo-inositol 1,4,5-trisphosphate. Biochem. J. 233:275–277

    PubMed  CAS  Google Scholar 

  • MacLeod, K.T. and Bers, D.M., 1987, Effects of rest duration and ryanodine on changes of extracellular [Ca] in cardiac muscle from rabbits. Am. J. Physiol. 253:C398–C407

    PubMed  CAS  Google Scholar 

  • Marben, E. and Wier, W.G., 1985, Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction of cardiac purkinje fibers. Circ. Res. 56:133–138

    Google Scholar 

  • McCann, J.D. and Welsh, M.J., 1986, Calcium-activated potassium channels in canine airway smooth muscle. J. Physiol., 372: 113–127

    PubMed  CAS  Google Scholar 

  • Meissner, G., 1986, Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. (1986) J. Biol. Chem. 261:6300–6306

    PubMed  CAS  Google Scholar 

  • Michell, B., 1986, A second messenger function for inositol tetrakisphosphate. Nature 324:613

    Article  PubMed  CAS  Google Scholar 

  • Michell, R.H., 1975, Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147

    PubMed  CAS  Google Scholar 

  • Micheli, R.H., 1982, Is phosphatidylinositol really out of the calcium gate? Nature 296:492–493

    Article  Google Scholar 

  • Mitchell, M.R., Powell, T., Terrar, D.A. and Twist, V.W., 1984, Ryanodine prolongs Ca currents while suppressing contraction in rat ventricular muscle cells. Br. J. Pharmacol. 81:13–15

    PubMed  CAS  Google Scholar 

  • Morris, A.P., Gallacher, D.V., Irvine, R.F. and Petersen, O.H., 1987, Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature 330:1653–1655

    Google Scholar 

  • Nishio, M., Kigoshi, S. and Muramasu, I., 1986, Ryanodine has no effect on the Ca current ventricular cells of guinea-pig. Eur. J. Pharmacol. 124:353–356

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature (London) 308:693–698

    Article  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C. Science 233:305–312

    Article  PubMed  CAS  Google Scholar 

  • Ohya, Y., Kitamura, K. and Kuriyama, H., 1987, Cellular calcium regulates outward currents in rabbit intestinal smooth muscle cell. Am. J. Physiol., 252: C401–C410

    PubMed  CAS  Google Scholar 

  • Ohya, Y., Terada, K., Kitamura, K. and Kuriyama, H., 1986, Membrane currents recorded from a fragment of rabbit intestinal smooth muscle cell. Am. J. Physiol. 251: C335–C346

    PubMed  CAS  Google Scholar 

  • Ohya, Y., Terada, K., Yamaguchi, K., Inoue, R., Okabe, K., Kitamura, K., Hirata, M. and Kuriyama, H., 1988, Effects of inositol phosphates on the membrane activity of smooth muscle cells of the rabbit portal vein. Pflügers Arch. Eur. J. Physiol., (in press).

    Google Scholar 

  • Rasmussen Jr., C.A.F., Sutko, J.L. and Barry, W.H., 1987, Effects of ryanodine and caffeine on contractility, membrane voltage, and calcium exchange in cultured heart cells. Circ. Res. 60:495–504

    PubMed  CAS  Google Scholar 

  • Rousseau, E., Smith, J.S. and Meissner, G., 1987, Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am. J. Physiol. 253:C364–C368

    PubMed  CAS  Google Scholar 

  • Sakai, T., Terada, K., Kitamura, K. and Kuriyama, H., 1988, Ryanodine inhibits the Ca dependent K current after depletion of Ca stored in smooth muscle cells of the rabbit ileal longitudinal muscle. Br. J. Pharmacol. in press

    Google Scholar 

  • Sasaguri, T., Hirata, M. and Kuriyama, H., 1985, Dependence on Ca2+ of the activities of phosphatidylinositol 4,5-bisphosphate phosphodiesterase and inositol 1,4,5-trisphosphate in smooth muscles of the porcine coronary artery. Biochem. J. 231:497–503

    PubMed  CAS  Google Scholar 

  • Shattock, M.J., Warner, K.C., Tidball, J.G. and Bers, D.M., 1987, Two different electrophysiological responses to ryanodine: Evidence for two populations of muscles isolated from the rabbit right ventricle. J. Mol. Cell. Cardiol. 19:751–762

    Article  PubMed  CAS  Google Scholar 

  • Singer, J.J. and Walsh, Jr., J.V., 1987, Characterization of calcium-activated potassium channels in single smooth muscle cells using the patch-clamp technique. Phlűgers Arch., 408: 98–111

    Article  CAS  Google Scholar 

  • Somlyo, A.V., Bond, M., Somlyo, A.P. and Scarpa, A., 1985, Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Circ. Res. 57:497–507

    PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R.F., Berridge, M.J. and Schulz, I., 1983, Release of Ca2+ from a non mitochodrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    Article  PubMed  CAS  Google Scholar 

  • Suematsu, E., Hirata, M. Hashimoto, T. and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem. Biophys. Res. Commun. 120:481–485

    Article  PubMed  CAS  Google Scholar 

  • Sutko, J.L., Ito, K. and Kenyon, J.L., 1985, Ryanodine: A modifier of sarcoplasmic reticulum calcium release in striated muscle. Fed. Proc. 44:2984–2988

    PubMed  CAS  Google Scholar 

  • Sutko, J.L. and Kenyon, J.L., 1983, Ryanodine modification of cardiac muscle responses to potassium-free solutions. J. Gen. Physiol. 82:385–404

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, R.V. and Ballou, C.E., 1961, Complete characterization of the Myo-inositol polyphosphates from beef brain phosphoinositide. J. Biol. Chem. 236:1902–1906.

    PubMed  CAS  Google Scholar 

  • Volpe, P., Giomanni, S., Di Virgilio, F. and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316:347–349

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.W., Somlyo, A.V., Goldman, Y.E., Somlyo, A.P. and Trentham, D.R., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Nature 327:249–252

    Article  PubMed  CAS  Google Scholar 

  • Walsh, Jr., J.V. and Singer, J.J., 1981, Voltage clamp of single freshly dissociated smooth muscle cells: Current-voltage relationships for three currents. Pflügers Arch., 390: 207–210

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H. and Van Breemen, C., 1985, Inositol-1,4,5-trisphosphate releases calcium from skinned cultured smooth muscle cells. Biochem. Biophys. Res. Commun. 130:270–274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Kitamura, K., Kuriyama, H. (1989). Role of Calcium Released from the Sarcoplasmic Reticulum of Smooth Muscle Cells as Induced by Inositol Phosphatides. In: Hidaka, H., Carafoli, E., Means, A.R., Tanaka, T. (eds) Calcium Protein Signaling. Advances in Experimental Medicine and Biology, vol 255. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5679-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5679-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5681-3

  • Online ISBN: 978-1-4684-5679-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics