Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 200))

  • 129 Accesses

Abstract

The ability to fabricate epitaxial layers of II–VI semiconductors has made it possible to circumvent the doping difficulties of II–VI semiconductors and to fabricate visible light emitters. Heteroep it axial structures are one of the promising approaches. The more interesting cases involve heavy strain and require particular values of the band offsets. We review recent work on CdTe/ZnTe and ZnSe/ZnTe multiquantum well structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Destriau, J. Chim. Phys. 33, 587 (1936).

    Google Scholar 

  2. See for example, F. A. Kroger, The Chemistry of Imperfect Crystals (North Holland Publishing Company, Amsterdam, 1973) 2nd Edition Vol. II. Chap. 16 p728ff.

    Google Scholar 

  3. See for example, T. Yao in The Technology and Physics of Molecular Beam Epitaxy, Edited by E. H. C. Parker (Plenum Press, New York, 1985) Chapter 10.

    Google Scholar 

  4. See for example,H. Mitsuhashi, I. Mitsuishi, and H. Kukimoto, J. Cryst. Growth 77, 219 (1986).

    Article  ADS  Google Scholar 

  5. See for example, Henry Kressel and J. K. Butler Semiconductor Lasers and Heterojunction LEDs. (Academic Press, New York, 1977).

    Google Scholar 

  6. R. H. Miles, G. Y. Wu, M. B. Johnson, T. C. McGill, J. P. Faurie, and S. Sivananthan, Appl. Phys. Lett. 48, 1383 (1986).

    Article  ADS  Google Scholar 

  7. M. Kobayashi, N. Mino, H. Katagiri, R. Kimura, M. Koagai, and K. Takahashi, Appl. Phys. Lett. 48, 296 (1986).

    Article  ADS  Google Scholar 

  8. A. M. Glass, K. Tai, R. B. Bylsma, R. D. Feldman, D. H. Olson, and R. F. Austin, Appl. Phys. Lett. 53, 834 (1988).

    Article  ADS  Google Scholar 

  9. R. H. Miles, J. O. McCaldin, and T. C. McGill, J. Crystal Growth 85, 188 (1987).

    Article  ADS  Google Scholar 

  10. J. H. Van der Merwe, J. Appi. Phys. 34, 123 (1963).

    Article  ADS  Google Scholar 

  11. C. A. B. Ball and J. H. Van der Merwe, in Dislocations in Solids edited by F. R. N. Nararro (North Holland, Amsterdam,1983) Vol. 6.

    Google Scholar 

  12. J. W. Matthews, in Epitaxial Growth, edited by J. W. Matthews (Academic Press, New York, 1968), Part B.

    Google Scholar 

  13. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974);

    ADS  Google Scholar 

  14. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 29, 273 (1975);

    Article  ADS  Google Scholar 

  15. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 32, 265 (1976).

    Article  ADS  Google Scholar 

  16. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985);

    Article  ADS  Google Scholar 

  17. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 49, 229 (1986).

    Google Scholar 

  18. J. C. Bean, in Silicon Molecular Beam Epitaxy, edited by E. Kasper and J. C. Bean (Chemical Rubber, Boca Raton, Florida, 1987).

    Google Scholar 

  19. R. H. Miles, “Structural and Optical Properties of Strained-layer Superlattices” (Thesis, California institute of Technology, August, 1988).

    Google Scholar 

  20. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987);

    Article  ADS  Google Scholar 

  21. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 52, 852(E) (1986).

    Article  ADS  Google Scholar 

  22. B. W. Dodson, Phys. Rev. B 35, 5558 (1987).

    Article  ADS  Google Scholar 

  23. M. Aven and J. S. Prener, Physics and Chemistry of II–VI Compounds (North-Holland, amsterdam, 1967).

    Google Scholar 

  24. J. O. McCaldin, T. C. McGill and C. A. Mead, Phys. Rev. Lett. 36, 56 (1976).

    Article  ADS  Google Scholar 

  25. W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977).

    Article  ADS  Google Scholar 

  26. J. Tersoff, Phys. Rev. Lett. 56, 2755 (1986).

    Article  ADS  Google Scholar 

  27. W. A. Harrison and J. Tersoff, J. Vac.Sci Technol. B4, 1068 (1986).

    Google Scholar 

  28. J. R. Waldrop, R. W. Grant, S. P. Kowalczyk, and E. A. Kraut, J. Vac. Sci. Technol. A3, 835 (1985).

    ADS  Google Scholar 

  29. A. D. Katnani and G. Margaritondo, J. Appl. Phys. 54, 2522 (1983).

    Article  ADS  Google Scholar 

  30. C. Van der Waal and R. M. Martin, J. Vac. Sci. Technol. B6, 1354 (1988).

    Google Scholar 

  31. G. Monfroy, S. Sivananthan, X. Chu, J. P. Faurie, R. D. Knox and J. L. Staudenmann, AppL Phys. Lett. 49, 152 (1986).

    Article  ADS  Google Scholar 

  32. J. Menendez, A. Pinczuk, J. P. Valladares, R. D. Feldman, and R. F. Austin, Appl. Phys. Lett. 50, 1101 (1987).

    Article  ADS  Google Scholar 

  33. R. H. Miles, T. C. McGill, S. Sivananthan, X. Chu and J. P. Faurie, J. Vac. Sci. Technol. B5, 1263 (1987).

    Google Scholar 

  34. G. Monfroy, X. Chu, M. Lange, and J. P. Faurie (unpublished results).

    Google Scholar 

  35. Tran Minh Duc and J. P. Faurie, Phys. Rev. Lett. 58, 1127 (1987).

    Article  ADS  Google Scholar 

  36. A. I. Katnani and G. Margaritondo, J. AppL Phys. 54, 2522 (1983).

    Article  ADS  Google Scholar 

  37. M. Kobayashi, N. Mino, H. Katagiri, R. Kimura, M. Konagai, and K. Takahashi, J. Appl. Phys. 60, 773 (1986).

    Article  ADS  Google Scholar 

  38. M. Kobayashi, R. Kimura, M. Konagai, K. Tahahashi, J. Cryst. Growth 81, 495 (1987).

    Article  ADS  Google Scholar 

  39. The recent experimental work in this field is reviewed in the article by Professor M. Konagai.

    Google Scholar 

  40. II. Asonen, J. Lilja, A. Vuoristo, M. Ishiko, and M. Pessa, Appl. Phys. Lett. 50, 733 (1987).

    Article  ADS  Google Scholar 

  41. Y. Rajakarunanayake, R. H. Miles, G. Y. Wu and T. C. McGill, J. Vac. Sci. Technol. B6, 1354 (1988).

    Google Scholar 

  42. T. Yasuda, I. Mitsuishi, and H. Kukimoto, AppL Phys. Lett. 52, 57 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

McGill, T.C., Miles, R.H., Rajakarunanayake, Y., McCaldin, J.O. (1989). II-VI Heterostructures and Multi-Quantum Wells. In: McGill, T.C., Sotomayor Torres, C.M., Gebhardt, W. (eds) Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors. NATO ASI Series, vol 200. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5661-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5661-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5663-9

  • Online ISBN: 978-1-4684-5661-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics