Magnetization, Flux Creep and Transport in Tl-Ca-Ba-Cu-O Thin Films

  • E. L. Venturini
  • J. F. Kwak
  • D. S. Ginley
  • B. Morosin
  • R. J. Baughman


The enormous experimental and theoretical effort on high-temperature copper-oxide-based superconductors began with the La-Ba-Cu-O system [1], shifted to the Y-Ba-Cu-O system [2], and recently has focused on the Bi-Ca-Sr-Cu-O [3] and Tl-Ca-Ba-Cu-O [4] systems. Tl-Ca-Ba-Cu-O ceramics have zero resistance and Meissner effect up to 125 K [5,6], and exhibit at least five structurally distinct superconducting phases.[7–10] Two common phases, Tl2Ca2Ba2Cu3Ox (Tl-2223 with a c-axis of 35.9 Å) and Tl2CaBa2Cu2Oy (T1-2122, c = 29.3 Å), contain double T1-O planes sandwiched by Ba-O sheets and blocks of double (T1-2122) or triple (T1-2223) Cu-O planes separated by intermediate Ca layers.


Critical Current Density Meissner Effect Critical State Model Flux Creep High Critical Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Japan. J. Appl. Phys. 27, L209 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    Z. Z. Sheng, A. M. Hermann, A. El Ali, C. Almasan, J. Estrada, T. Datta and R. J. Matson, Phys. Rev. Lett. 60, 937 (1988);ADSCrossRefGoogle Scholar
  5. Z. Z. Sheng and A. M. Hermann, Nature 332, 138 (1988).ADSCrossRefGoogle Scholar
  6. 5.
    D. S. Ginley, E. L. Venturini, J. F. Kwak, R. J. Baughman, M. J. Carr, P. F. Hlava, J. E. Schirber and B. Morosin, Physica C 152, 217 (1988).ADSCrossRefGoogle Scholar
  7. 6.
    S. S. P. Parkin, V. Y. Lee, E. M. Engler, A. I. Nazzal, T. C. Huang, G. Gorman, R. Savoy and R. Beyers, Phys. Rev. Lett. 60, 2539 (1988).ADSCrossRefGoogle Scholar
  8. 7.
    R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, C. G. Hadidiacos, P. J. Heaney, D. R. Veblen, Z. Z. Sheng, A. El Ali and A. M. Hermann, Phys. Rev. Lett. 60, 1657 (1988).ADSCrossRefGoogle Scholar
  9. 8.
    B. Morosin, D. S. Ginley, P. F. Hlava, M. J. Carr, R. J. Baughman, J. E. Schirber, E. L. Venturini and J. F. Kwak, Physica C 152, 413 (1988).ADSCrossRefGoogle Scholar
  10. 9.
    S. S. P. Parkin, V. Y. Lee, A. I. Nazzal, R. Savoy, R. Beyers and S. J. LaPlaca, Phys. Rev. Lett. 61, 750 (1988).ADSCrossRefGoogle Scholar
  11. 10.
    B. Morosin, D. S. Ginley, J. E. Schirber and E. L. Venturini, Physica C 156, 587 (1988)ADSCrossRefGoogle Scholar
  12. 11.
    D. S. Ginley, J. F. Kwak, R. P. Hellmer, R. J. Baughman, E. L. Venturini and B. Morosin, Appl. Phys. Lett. 53, 406 (1988).ADSCrossRefGoogle Scholar
  13. 12.
    D. S. Ginley, J. F. Kwak, R. P. Hellmer, R. J. Baughman, E. L. Venturini, M. A. Mitchell and B. Morosin, Physica C 156, 592 (1988).ADSCrossRefGoogle Scholar
  14. 13.
    Y. B. Kim, C. F. Hempstead and A. R. Strnad, Phys. Rev. Lett. 9, 306 (1962);ADSCrossRefGoogle Scholar
  15. P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).ADSCrossRefGoogle Scholar
  16. 14.
    Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 1676 (1988).CrossRefGoogle Scholar
  17. 15.
    W. Reith, P. Muller, C. Allgeier, R. Hoben, J. Heise, J. S. Schilling and K. Andres, Physica C 156, 319 (1988).ADSCrossRefGoogle Scholar
  18. 16.
    C. P. Bean, Phys. Rev. Lett. 8, 250 (1962);ADSMATHCrossRefGoogle Scholar
  19. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).ADSCrossRefGoogle Scholar
  20. 17.
    J. F. Kwak, E. L. Venturini, R. J. Baughman, B. Morosin and D. S. Ginley, Physica C 156, 103 (1988).ADSCrossRefGoogle Scholar
  21. 18.
    C. Giovannella, G. Collin, P. Rouault and I. A. Campbell, Europhys. Lett. 4, 109 (1987).ADSCrossRefGoogle Scholar
  22. C. Giovannella, P. Rouault, I. A. Campbell and G. Collin, J. Appl. Phys. 63, 4173 (1988).ADSCrossRefGoogle Scholar
  23. 19.
    M. E. McHenry, M. P. Maley, E. L. Venturini and D. S. Ginley, submitted.Google Scholar
  24. 20.
    M. R. Beasley, R. Labusch and W. W. Webb, Phys. Rev. 181, 682 (1969).ADSCrossRefGoogle Scholar
  25. 21.
    E. L. Venturini, J. F. Kwak, D. S. Ginley, B. Morosin and R. J. Baughman, in preparation.Google Scholar
  26. 22.
    J. F. Kwak, E. L. Venturini, R. J. Baughman, B. Morosin and D. S. Ginley, Cryogenics (accepted).Google Scholar
  27. 23.
    D. Dew-Hughes, Phil. Mag. B 55, 459 (1987).CrossRefGoogle Scholar
  28. 24.
    M. Klee, J. W. C. de Vries and W. Brand, Physica C 156, 641 (1988).ADSCrossRefGoogle Scholar
  29. 25.
    A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).ADSCrossRefGoogle Scholar
  30. 26.
    L. Schimmele, H. Kronmuller and H. Teichler, Phys. Stat. Solidi (b) 147, 361 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • E. L. Venturini
    • 1
  • J. F. Kwak
    • 1
  • D. S. Ginley
    • 1
  • B. Morosin
    • 1
  • R. J. Baughman
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations