S-Adenosylmethionine Decarboxylase from Escherichia Coli and from Saccharomyces Cerevisiae: Cloning and Overexpression of the Genes

  • K. Kashiwagi
  • S. K. Taneja
  • Q.-W. Xie
  • C. W. Tabor
  • H. Tabor
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


S-Adenosylmethionine decarboxylase is a key enzyme in the biosynthesis of spermidine and spermine in both prokaryotes and eukaryotes.1 We first detected this enzyme in our initial studies on the biosynthesis of spermidine in E. coli2, 3; subsequently S-adenosylmethionine decarboxylase has been found widely distributed in bacteria, fungi, plants, and animal cells. The enzyme has been purified to homogeneity from E. coli,4, 5S. cerevisiae,6, 7 liver,8, 9 lymphocytes,11 and mammary gland.12


Reductive Amination Histidine Decarboxylase Methionine Adenosyltransferase Proenzyme Form Protein Cleavage Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Review Articles: C. W. Tabor and H. Tabor, Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase, Adv. Enzymol. Relat. Areas Mol. Biol., 56: 251–282 (198PubMedGoogle Scholar
  2. C. W. Tabor and H. Tabor, Polyamines, Annu. Rev. Bioehem. 53: 749–790 (1984).CrossRefGoogle Scholar
  3. A. E. Pegg, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J. 234: 249–262 (1986).PubMedGoogle Scholar
  4. 2.
    H. Tabor, S. M. Rosenthal, and C. W. Tabor, The biosynthesis of spermidine and spermine from putrescine and methionine, J. Biol. Chem. 233: 907–914 (1958).PubMedGoogle Scholar
  5. 3.
    C. W. Tabor, Adenosylmethionine decarboxylase, Methods Enzymol. 5: 756–760 (1962).CrossRefGoogle Scholar
  6. 4.
    R. B. Wickner, C. W. Tabor, and H. Tabor, Purification of adenosylmethionine decarboxylase from Escherichia coli W: evidence for covalently bound pyruvate, J. Biol. Chem. 245: 2132–2139 (1970).PubMedGoogle Scholar
  7. 5.
    G. D. Markham, C. W. Tabor, and H. Tabor, S-Adenosylmethionine decarboxylase of Escherichia coli: studies on the covalently-linked pyruvate required for activity, J. Biol. Chem. 257: 12063–12068 (1982).PubMedGoogle Scholar
  8. 6.
    H. Pösö, R. Sinervirta, and J. Jänne, S-Adenosylmethionine decarboxylase from baker’s yeast, Biochem. J. 151: 67–73 (1975).PubMedGoogle Scholar
  9. 7.
    M. S. Cohn, C. W. Tabor, and H. Tabor, Identification of a pyruvoyl residue in S-adenosylmethionine decarboxylase from Saccharomyces cerevisiae, J. Biol. Chem. 252: 8212–8216 (1977).PubMedGoogle Scholar
  10. 8.
    A. A. Demetriou, M. S. Cohn, C. W. Tabor, and H. Tabor, Identification of pyruvate in S-adenosylmethionine decarboxylase from rat liver, J. Biol. Chem. 253: 1684–1686 (1978).PubMedGoogle Scholar
  11. 9.
    A. E. Pegg, Purification of rat liver S-adenosyl-L-methionine decarboxylase, Biochem. J. 141: 581–583 (1974).PubMedGoogle Scholar
  12. 10.
    A. E. Pegg, Evidence for the presence of pyruvate in rat liver S-adenosylmethionine decarboxylase, FEBS Lett. 84: 33–36 (1977).PubMedCrossRefGoogle Scholar
  13. 11.
    C. E. Seyfried, O. E. Oleinik, J. L. Degen, K. Resing, and D. R. Morris, Purification, properties, and regulation of the level of bovine S-adenosylmethionine decarboxylase during lymphocyte mitogenesis, Biochim. Biophys. Acta 716: 169–177 (1982).PubMedCrossRefGoogle Scholar
  14. 12.
    T. Sakai, C. Hori, K. Kano, and T. Oka, Purification and characterization of S-adenosyl-L-methionine decarboxylase from mouse mammary gland and liver, Biochemistry 18: 5541–5548 (1979).PubMedCrossRefGoogle Scholar
  15. 13.
    W. D. Riley and E. E. Snell, Histidine decarboxylase of Lactobacillus 30a. IV. The presence of covalently bound pyruvate as the prosthetic group, Biochemistry 7: 3520–3528 (1968).PubMedCrossRefGoogle Scholar
  16. 14.
    Reviewed by P. A. Recsei and E. E. Snell, Pyruvoyl enzymes, Annu. Rev. Biochem. 53: 357–358 (1984).PubMedCrossRefGoogle Scholar
  17. 15.
    P. A. Recsei, Q. K. Huynh, and E. E. Snell, Conversion of prohistidine decarboxylase to histidine decarboxylase: peptide chain cleavage by nonhydrolytic serinolysis, Proc. Natl. Acad. Sci. USA 80: 973–977 (1983).PubMedCrossRefGoogle Scholar
  18. 16.
    S. Tabor and C. C. Richardson, DNA sequence analysis with a modified bacteriophage T7 DNA polymerase, Proc. Natl. Acad. Sci. USA 84: 4767–4771 (1987).PubMedCrossRefGoogle Scholar
  19. 17.
    C. W. Tabor, and H. Tabor, Adenosylmethionine decarboxylase of E. coli is synthesized from a proenzyme, Proceedings of the 13th International Congress of Biochemistry, Amsterdam, The Netherlands, Abstract No. FR-1 83, p. 180 (1985).Google Scholar
  20. 18.
    C. W. Tabor and H. Tabor, The speEspeD operon of Escherichia coli: formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase, J. Biol. Chem. 262: 16037–16040 (1987).PubMedGoogle Scholar
  21. 19.
    D. L. Anton and R. Kutny, Escherichia coli S-adenosylmethionine decarboxylase: subunit structure, reductive amination, and NE2-terminal sequences, J. Biol. Chem. 262: 2817–2822 (1987).PubMedGoogle Scholar
  22. 20.
    H. Tabor and C. W. Tabor, Effect of site-specific mutagenesis on the processing of the proenzyme of S-adenosylmethionine decarboxylase. FASEB J. 2, Abstract No. 1602, p. A572 (1988).Google Scholar
  23. 21.
    C. W. Tabor, H. Tabor, and Q.-W. Xie, Spermidine synthase of Escherichia coli: localization of the speE gene, Proc. Natl. Acad. Sci. USA 83: 6040–6044 (1986).PubMedCrossRefGoogle Scholar
  24. 22.
    Q.-W. Xie, C. W. Tabor, and H. Tabor, manuscript in preparation.Google Scholar
  25. 23.
    F. Hilger and R. K. Mortimer, Genetic mapping of argl and arg8 in Saccharomyces cerevisiae by trisomie analysis combined with interallelic complementation, J. Bacteriol. 141: 270–274 (1980).PubMedGoogle Scholar
  26. 24.
    M. S. Cohn, C. W. Tabor, and H. Tabor, Isolation and characterization of Saccharomyces cerevisiae mutants deficient in S-adenosylmethionine decarboxylase, spermidine, and spermine, J. Bacteriol. 134: 208–213 (1978).PubMedGoogle Scholar
  27. 25.
    M. S. Cohn, C. W. Tabor, H. Tabor, and R. B. Wickner, Spermidine or spermine requirement for killer double-stranded RNA plasmid replication in yeast, J. Biol. Chem. 253: 5225–5227 (1978).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • K. Kashiwagi
    • 1
  • S. K. Taneja
    • 1
  • Q.-W. Xie
    • 1
  • C. W. Tabor
    • 1
  • H. Tabor
    • 1
  1. 1.National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations