Skip to main content

Biological Basis for Interspecies Extrapolations of Halogenated Solvents and of 1,3-Butadiene

  • Chapter
Biologically Based Methods for Cancer Risk Assessment

Abstract

It is well established that species differences in toxicity and carcinogenicity of xenobiotics are often based on species-specific metabolism. Hence, the use of pharmacokinetic models considering relevant metabolic routes may considerably improve risk assessment procedures (Bolt, 1987; Travis, 1987). The biological basis for an appropriate interspecies extrapolation is knowledge of the biochemical mode of action and of the toxicologically relevant metabolic pathways. This will be exemplified by a discussion of major halogenated industrial solvents and of 1,3-butadiene. Long-term animal bioassays with these compounds have demonstrated considerable differences between the two most widely used animal species, mice and rats. This review will not consider 1,1,1trichloroethane. This solvent is metabolized in man and in experimental animals to a very low extent only (up to 5–10% of the inhaled dose), and no positive carcinogenicity data have hitherto been obtained. However, the closely related compounds 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane which are extensively metabolized have produced liver tumors in mice (Baseman et al., 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, A.E., and Anders, M., 1976, Metabolism of dihalomethane to formaldehyde and inorganic halides., In vitro studies, Drug. Metab. Disposition 4:357–361.

    CAS  Google Scholar 

  • Anders, M.W., Kubic, V.L., and Ahmed, A.E., 1977, Metabolism of halogenated methanes and macromolecular binding, J. Env. Pathol. Toxicol., 1:117–124.

    CAS  Google Scholar 

  • Andersen, M.E., Clewell, J.E., Gargas, M.L., Smith, F.A., and Reitz, R.H., 1987, Physiologically based pharmacokinetics and the risk assessment process for methylene chloride, Toxicol. Appl. Pharmacol., 87:185.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, K., 1983, Interactions of trichlormethylene with DNA in vitro and with RNA and DNA in various mouse tissues in vivo, Arch. Toxicol., 54:181–193.

    Article  PubMed  CAS  Google Scholar 

  • Bolt, H.M., 1987, Pharmacokinetic factors and their implication in the induction of mouse liver tumours by halogenated hydrocarbons,Arch. Toxicol., Suppl., 10:190.

    Article  CAS  Google Scholar 

  • Bolt, H.M., Laib, R.J., and Fílser, J.G., 1982, Reactive metabolites and carcinogenicity of halogenated ethylenes, Biochem. Pharmacol., 31:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Bolt, H.M., and Link, B., 1980, Zur Toxikologie von Perchloräthylen, Verh. Dtsch. Ges. Arbeitsmed. (Gentner, Stuttgart), 2:463–470.

    Google Scholar 

  • Bolt, H.M., Buchter A., Wolowski, L., Gil, D.L., and Bolt, W., 1977, Incubation of f4C-trichlorethylene vapor with rat liver microsomes: uptake of radioactivity and covalent protein binding of metabolites, Int. Arch. Env. Occup. Hlth., 39:102–111.

    Google Scholar 

  • Bolt, H.M., Fílser, J.G., and Störmer, F., 1984, Inhalation pharmacokinetics based on gas uptake studies. V. Comparative pharmacokinetics of ethylene and 1,3-butadiene in rats, Arch. Toxicol“ 55:213–218.

    CAS  Google Scholar 

  • Bond, J.A., Dahl, A.R., Henderson, R.F., Dutcher, J.S., Mauderly, J.L., and Birnbaum, L.S., 1986, Species differences in the disposition of inhaled butadiene, Toxicol. Appl. Pharmacol., 84:617–627.

    Article  PubMed  CAS  Google Scholar 

  • Citti, L., Gervasi, P.G., Turchi, G., Belluci, G., and Bianchini, R., 1984, The reaction of 3,4-epoxy-l-butene with deoxyguanosine and DNA in vitro: synthesis and characterization of the main adducts, Carcinogenesis, 5:47–52.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, P., 1978, Trichloroethylene: hepatic effects, metabolism and elimination, Fd. Cosmet. Toxicol., 16:491–492.

    CAS  Google Scholar 

  • Costa, A.K., and Ivanetich, K.M., 1980, Tetrachloroethylene metabolism by the hepatic microsomal cytochrome P-450 system, Biochem. Pharmacol., 29:2863–2869.

    Article  PubMed  CAS  Google Scholar 

  • Dekant, W., 1986, Metabolic conversion of tri-and tetrachloroethylene: formation and deactivation of genotoxic intermediates. In: New Concepts and Developments in Toxicology, P.L. Chambers, P. Gehring, and F. Sakai, eds., pp. 211–221, Elsevier Science Publishers, Amsterdam, New York, Oxford.

    Google Scholar 

  • Dekant, W., Schulz, A., Metzler, M., and Henschler, D., 1986, Absorption, elimination and metabolism of trichloroethylene: a quantitative comparison between rats and mice, Xenobiotica, 16:143–152.

    Article  PubMed  CAS  Google Scholar 

  • Dekant, W., Vamvakas, S., Berthold, K., Schmidt, S., Wild, D., and Henschler, D., 1986, Bacterial beta-lyase cleavage and mutagenicity of cysteine conjugates derived from the nephrocarcinogenic alkenes trichloroethylene, tetrachloroethylene and hexachlorobutadiene, Chem. biol. Interact., 60:31–45.

    Article  PubMed  CAS  Google Scholar 

  • Dekant, W., Metzler, M., and Henschler, D., 1986a, Identification of S1,2-divinyl-N-acetyl-cysteine as a urinary metabolite of trichloroethylene: a possible explanation for its nephrocarcinogenicity in male rats, Biochem. Pharmacol., 35:2455–2458.

    Article  CAS  Google Scholar 

  • Dekant, W., Metzler, M., and Henschler, D., 1986b, Identification of S1,2,2-trichlorovinyl-N-acetyl-cysteine as a urinary metabolite of tetrachloroethylene: bioactivation through glutathione conjugation as a possible explanation of its nephrocarcinogenicity, J. Biochem. Toxicol., 1 (2):57–72.

    Article  CAS  Google Scholar 

  • Dekant, W., Metzler, M., and Henschler, D., 1984, Novel metabolites of trichloroethylene through dechlorination reactions in rats, mice and humans, Biochem. Pharmacol., 33:2021–2027.

    Article  PubMed  CAS  Google Scholar 

  • Elcombe, C.R., Rose, M.S., and Pratt, I.S., 1985, Biochemical, histological, and ultrastructural changes in rat and mouse liver following the administration of trichloroethylene: possible relevance to species differences in hepatocarcinogenicity, Toxicol. Appl. Pharmacol., 79:365–376.

    Article  PubMed  CAS  Google Scholar 

  • Filser, J.G., and Bolt, H.M., 1979, Pharmacokinetics of halogenated ethylenes in rats, Arch. Toxicol., 42:123–126.

    Article  PubMed  CAS  Google Scholar 

  • Filser, J.G., and Bolt, H.M., 1984, Inhalation pharmacokinetics based on gas uptake studies. VI. Comparative evaluation of ethylene oxide and butadiene monoxide as exhaled reactive metabolites of ethylene and 1,3-butadiene in rats, Arch. Toxicol., 55:219–223.

    Article  PubMed  CAS  Google Scholar 

  • Gargas, M.L., Clewell, H.J., and Andersen, M.E., 1986, Metabolism of inhaled dihalomethanes in vivo: differentiation of kinetic constants for two independent pathways, Toxicol. Appl. Pharmacol., 82:211.

    Article  PubMed  CAS  Google Scholar 

  • Gervasi, P.G., Citti, L., Del Monte, M., Longo, V., and Benetti, D., 1985, Mutagenicity and chemical reactivity of epoxidic intermediates of the isoprene metabolism and other structurally related compounds, Mutation Res., 156:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Green, T., and Prout, M.S., 1985, Species differences in response to trichloroethylene. II. Biotransformation in rats and mice, Toxicol. Appl. Pharmacol., 79:404–411.

    Article  Google Scholar 

  • Green, T., Nash, J.A., and Proven, W.M., 1986, Comparative pharmacokine-’ tics of inhaled dichloromethane in rats and mice, Abstract, Annual Meeting of the Society of Toxicology (SOT).

    Google Scholar 

  • Haseman, J.K., Crawford, D.D., Huff, J.E., Boorman, G.A., and McConnell, E.E., 1984, Results from 86 two-year carcinogenicity studies conducted by the National Toxicology Program, J. Toxicol. Env. Hlth., 14:621–639.

    Article  CAS  Google Scholar 

  • Hassall, C.D., Gandolfi, A.J., Duhamel, R.C., and Brendel, K., 1984, The formation and biotransformation of cysteine conjugates of halogenated ethylenes by rabbit renal tubules, Chem. Biol. Interact., 49:283–297.

    Article  PubMed  CAS  Google Scholar 

  • Hathway, D.E., 1980, Consideration of the evidence for mechanisms of 1,1,2-trichloroethylene metabolism, including new identification of its dichloroacetic acid and trichloroacetic acid metabolites in mice, Cancer Lett., 8:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Hazleton Laboratories Europe, 1981, 1,3-Butadiene. Inhalation study in the rat. Report No. 2788–522/3, Hazleton Labs., Harrowgate, England.

    Google Scholar 

  • Henschler, D., 1977, Metabolism of chlorinated alkenes and alkane as related to toxicity, J. Environ. Pathol. Toxicol., 1:125–133.

    PubMed  CAS  Google Scholar 

  • Henschler, D., and Hoos, R., 1982, Metabolic activation and deactivation mechanisms of di-, tri-, and tetrachloroethylenes, in: Snyder, R. et al. (eds.) Biological Reactive Intermediates - II, part A, Plenum Publishing Corporation, pp. 659–666.

    Google Scholar 

  • Herren-Freund, S.L., Pereira, M.A., Khoury, M.D., and Olson, G., 1987, The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver, Toxicol. Appl. Pharmacol., 90:183–189.

    Article  PubMed  CAS  Google Scholar 

  • Huff, J.E., Melnick, R.L., Solleveld, H.A., Hasemann, J.K., Power, M., and Miller, R.A., 1985, Multiple organ carcinogenicity of 1,3-butadiene in B6C3F1 mice after 60 weeks of inhalation exposure, Science, 277:548–549.

    Article  Google Scholar 

  • Ikeda, M., and Ohtsuji, H., 1972, A comparative study of the excretion of Fujiwara reaction-positive substances in urine of humans and rodents given trichloro-or tetrachloro-derivatives of ethane and ethylene, Brit. J. Ind. Med., 29:99–104.

    CAS  Google Scholar 

  • Ivanetich, K.M., and van den Honert, L.H., 1981, Chloroethanes: their metabolism by hepatic cytochrome P-450 in vitro, Carcinogenesis, 2:697–702.

    Article  PubMed  CAS  Google Scholar 

  • Ketterer, B., 1986, Detoxication reactions of glutathione and glutathione transferases, Xenobiotica, 16:957–973.

    Article  PubMed  CAS  Google Scholar 

  • Kreiling, R., Laib, R.J., Falser, J.G., and Bolt, H.M., 1986, Species differences in butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics, Arch. Toxicol., 58:235–238 (1986).

    Google Scholar 

  • Kreiling, R., Laib, R.J., Falser, J.G., and Bolt, H.M., 1987, Inhalation pharmacokinetics of 1,2-epoxybutene-3 reveal species differences between rats and mice sensitive to butadiene induced carcinogenesis, Arch. Toxicol., 61:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Kubic, V.L., and Anders, M.W., 1978, Metabolism of dihalomethanes to carbon monoxide. III. Studies on the mechanism of the reaction, Biochem. Pharmacol., 27:2349–2355.

    Article  PubMed  CAS  Google Scholar 

  • Kurppa, K., and Vainio, H., 1981, Effects of intermittent dichloromethane inhalation on blood carboxyhemoglobin concentration and drug metabolizing enzymes in rat, Res. Commun. Chem. Pathol. Pharmacol., 32:535–544.

    PubMed  CAS  Google Scholar 

  • Laib, R.J., Stöckle, G., Bolt, H.M., and Kunz, W., 1979, Vinyl chloride and trichloroethylene: comparison of alkylating effects of metabolites and induction of preneoplastic enzyme deficiencies in rat liver, J. Cancer Res. Clin. Oncol., 94:134–147.

    Article  Google Scholar 

  • Laib, R.J., 1982, Specific covalent binding and toxicity of aliphatic halogenated xenobiotics, in: “ Reviews on Drug Metabolism and Drug Interactions”, Vol. 5, No. 1, Beckett, A.H. and Gorrod, J.W., eds., pp. 1–48, Freund Publishing House Ltd., London.

    Google Scholar 

  • Laib, R.J., Falser, J.G., Kreiling, R., Vangala, R.R., and Bolt, H.M., 1988, Inhalation pharmacokinetics of 1,3-butadiene and 1,2-epoxybutene-3 in rats and mice, Environ. Hlth. Perspect., in press.

    Google Scholar 

  • Malvoisin, E., and Roberfroid, M., 1982, Hepatic microsomal metabolism of 1,3-butadiene, Xenobiotica, 12:137–144.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, M.J., and Zempel, J.A., 1981, The dose-dependent metabolism of C-methylene chloride following oral administration to rats, Fd. Cosmet. Toxicol., 19:73–78.

    Article  CAS  Google Scholar 

  • McKenna, M.J., Zempel, J.A., and Braun, W.A., 1982, The pharmacokinetics of inhaled methylene chloride in rats, Toxicol. Appl. Pharmacol., 65:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R.E., and Guengerich, F.P., 1982, Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide, Biochemistry, 21:1090–1097.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, A.M., Bridges, J.W., and Elcombe, C.R., 1984, Factors influencing peroxisome proliferation in cultured rat hepatocytes, Arch. Toxicol., 55:239–246.

    CAS  Google Scholar 

  • NIEHS, 1988, International Symposium on the Toxicology, Carcinogenesis, and Human Health Aspects of 1,3-Butadiene, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA, April 12–13.

    Google Scholar 

  • NTP, 1986, Toxicology and carcinogenesis of tetrachloroethylene (perchloroethylene) in F 344/N rats and B6C3F1 mice (inhalation studies), NTP-TR311, US Dept. of Health & Human Services, Washington, DC.

    Google Scholar 

  • Ohtsuki, T., Sato, K., Koizumi, A., Kumai, M., and Ikeda, M., 1983, Limited capacity of humans to metabolize tetrachloroethylene, Int. Arch. Occup. Environ. Hlth., 51:381–390.

    Article  CAS  Google Scholar 

  • Parchman, I.G. and Magee, P.N., 1982, Metabolism of 14C-trichloroethy-lene to í4CO2 and interaction of a metabolite with DNA of rats and mice, J. Toxicol. Environ. Hlth., 9:797–813.

    Article  CAS  Google Scholar 

  • Pegg, D.G., Zempel, J.A., Braun, W.H., and Watanabe, P.G., 1979, Disposition of tetrachloro(14C)ethylene following oral and inhalation exposure in rats, Toxicol. Appt. Pharmacol., 51:455–474.

    Google Scholar 

  • Prout, M.S., Provan, W.M., and Green, T., 1985, Species differences in response to trichloroethylene. I. Pharmacokinetics in rats and mice, Toxicol. Appl. Pharmacol., 79:389–300.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, D., 1983, Biological actions and interactions of tetrachloroethylene, Mutation Res., 123:411–429.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, D., Werner, H.W., Metzler, M., and Henschler, D., 1979, Molecular mechanism of 1,1-dichloroethylene toxicity: excreted metabolites reveal different pathways of reactive metabolites, Arch. Toxicol., 42:159–169.

    Article  PubMed  CAS  Google Scholar 

  • Rodkey, F.L., and Collison, H.A., 1977, Biological oxidation of 14C-methylene chloride to carbon monoxide and carbon dioxide by the rat, Toxicol. Appl. Pharmacol., 40:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Schumann, A.M., Quast, J.F., and Watanabe, P.G., 1980, The pharmacokinetics and macromolecular interactions of perchloroethylene in mice and rats as related to oncogenicity, Toxicol. Appl. Pharmacol., 55:207–219.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, J.L., Ratnayake, J.H., and Anders, M.W., 1980, Metabolism of dihalomethanes to carbon monoxide. IV. Studies in isolated rat hepatocytes, Toxicol. Appl. Pharmacol., 55:484–489.

    Article  PubMed  CAS  Google Scholar 

  • Stoff, W.T., Quast, J.F., and Watanabe, P.G., 1982, The pharmacokinetics and macromolecular interactions of trichloroethylene in mice and rats, Toxicol. Appl. Pharmacol., 62:137–151.

    Article  Google Scholar 

  • Travis, C.C., 1987, Interspecies extrapolations in risk analysis, Toxicology, 47:3.

    Article  PubMed  CAS  Google Scholar 

  • Vamvakas, S., Dekant, W., Berthold, K., Schmidt, S., Wild, D., and Henschler, D., 1987, Enzymatic transformation of mercapturic acids derived from halogenated alkenes to reactive and mutagenic intermediates, Biochem. Pharmacol., 36:2741–2748.

    Article  PubMed  CAS  Google Scholar 

  • Yllner, S., 1971a, Metabolism of 1,1,2-trichloroethane-1,2-14C in the mouse, Acta pharmacol. toxicol., 30:248–256.

    Article  CAS  Google Scholar 

  • Yllner, S., 1971b, Metabolism of 1,1,2,2-tetrachloroethane-1,2-14C in the mouse, Acta pharmacol. toxicol., 29:499–512.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Bolt, H.M., Laib, R.J. (1989). Biological Basis for Interspecies Extrapolations of Halogenated Solvents and of 1,3-Butadiene. In: Travis, C.C. (eds) Biologically Based Methods for Cancer Risk Assessment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5625-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5625-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5627-1

  • Online ISBN: 978-1-4684-5625-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics