Advertisement

A Stochastic Model for High-Let Response for Boron Neutron Capture Therapy (BNCT)

  • Floyd J. Wheeler
  • Merle L. Griebenow
  • Daniel E. Wessol
  • David W. Nigg
  • Robert A. Anderl
Part of the Basic Life Sciences book series (BLSC, volume 50)

Abstract

There is evidence showing that there is a significant variation in tumor-boron and blood-boron concentrations for individual patients. There also is a wide variation in the size and location of the tumor. This diversity creates a situation in which treatment must be carefully tailored to the specific needs of each patient. Patient treatment planning will require computer modeling of the various radiation transport and interaction processes expected to occur, coupled with a display of the results in easily interpretable form. Such an analytical evaluation will allow the radiation oncologist to select the beam configuration, specify the irradiation field and positions of local thermal neutron shields, establish the optimum time after boron administration to begin irradiation, and specify the duration of irradiation.

Keywords

Boron Neutron Capture Therapy Neutron Fluence Fractional Survivor Beam Configuration Chord Length Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bond, V. P., Varma, M. N., Son Dnaus, C. A., and Feinendegen, L. E., 1985, An alternative to absorbed dose, quality, and RBE at low exposures, Radiat. Res.,Suppl. 8, 104, S-52-S-57.Google Scholar
  2. Deutsch, O. L. and Murray, B. W., 1975, Monte Carlo dosimetry calculation for boron neutron capture therapy in the treatment of brain tumors, Nucl. Technol., 26: 320.Google Scholar
  3. Gabel, D., Fairchild, R.G., Larsson, B., Drescher, K., Rowe, W. R., 1983, The biological effect of the 10B(n,α)7 Li reaction and its simulation by Monte Carlo calculation, in: Proc. of the First International Symposium on Neutron Capture Therapy, Cambridge, MA, USA (R. G. Fairchild and G. L. Brownell, eds), BNL-51730, 128.Google Scholar
  4. Gabel, D., Foster, S., and Fairchild, R. G., 1987, The I$nte Carlo simulation of the biological effect of the B(n,a) Li reaction in cells and tissue and its implication for boron neutron capture therapy, Radiat. Res. 111, 14.Google Scholar
  5. Kellerer, A. M. and Rossi, H. H., 1972, The theory of dual radiation action, Current Topics in: Radiat. Res. Quarterly, 8: 85.Google Scholar
  6. Kitao, K., 1975, A method forcalr9ulating the absorbed dose near interface from B(n,a) Li reaction, Radiat. Res., 61: 304.Google Scholar
  7. Northcliffe, L. C. and Schilling, R. F., 1970, Range and stopping power tables for heavy ions, Nucl. Data Tables, A7: 233.Google Scholar
  8. Rydin, R. A., Deutsch, O. L., and Murray, B. W., 1975, The effect of geometry on capillary wall dose for boron neutron capture therapy, Phys. Med. Biol., 21: 134.Google Scholar
  9. Takeuchi, A., Nagata, T., Ohashi, F., Sasaki, N., Ushio, Y., and Hatanaka, H., 1985, Tolerance of canine brain to boron neutron capture therapy, Jpn. J. Vet. Sci., 47: 859.Google Scholar
  10. Ziegler, J. F., Biersack, J. P., and Littmark, U., 1985, “The Stopping and Range of Ions in Solids”, Pergammon Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Floyd J. Wheeler
    • 1
  • Merle L. Griebenow
    • 1
  • Daniel E. Wessol
    • 1
  • David W. Nigg
    • 1
  • Robert A. Anderl
    • 1
  1. 1.Idaho National Engineering LaboratoryEG&G Idaho, Inc.Idaho FallsUSA

Personalised recommendations