Skip to main content

Calcium as a Hormonal Messenger for Control of Mitochondrial Functions

  • Chapter
Cell Calcium Metabolism
  • 87 Accesses

Abstract

During the past decade it has become generally accepted that hormones such as norepinephrine, angiotensin II, and vasopressin affect metabolism of the rat liver by increasing free calcium [Ca2+ ] of the cytosol. In contrast, a role for calcium as a mediator of the action of glucagon has been controversial. Reports that glucagon alters fluxes of calcium in and out of the liver cell and that it lowers mitochondrial calcium were nullified to some degree by other reports indicating that these effects were observed only when pharmacological doses of glucagon were administered and that cytosolic [Ca2+ ] is not altered by glucagon. The unsettled nature of the field was described in the comprehensive review of Williamsonet al. (1981). Things began to fall into place when the fluorescent probe for [Ca2+ ], Quin2, became available, and Charestet al. (1983) demonstrated that glucagon added at the high ose level of 10 nM raised cytosolic [Ca2+ ] of hepatocytes from a basal concentration of about 0.2µM to 0.6µM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aprille, J. R., and Asimakis, G. K., 1980, Postnatal development of rat liver mitochondria: State 3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotide, Arch. Biochem. Biophys. 201:564–575.

    Article  PubMed  CAS  Google Scholar 

  • Aprille, J. R. and Austin, J. (1981), Regulation of the mitochondrial adenine nucleotide pool size, Arch. Biochem. Biophys. 212:689–699.

    Article  PubMed  CAS  Google Scholar 

  • Aprille, J. R. and Nosek, M. T. (1987), Neonatal hypoxia or maternal diabetes delays postnatal development of liver mitochondria, Ped. Res. 21:266–269.

    Article  CAS  Google Scholar 

  • Aprille, J. R., Yaswen, P., and Rulfs, J., 1981, Acute postnatal regulation of pyruvate carboxylase activity by compartmentation of mitochondrial adenine nucleotides, Biochim. Biophys. Acta 675: 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Austin, J. and Aprille, J. R. (1984), Carboxyatractyloside sensitive influx and efflux of adenine nucleotides in rat liver mitochondria, J. Biol. Chem. 259:154–160.

    PubMed  CAS  Google Scholar 

  • Beatrice, M. L. Palmer, J. W. and Pfeiffer, D. R., 1980, The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria, J. Biol. Chem. 255:8663–8671.

    PubMed  CAS  Google Scholar 

  • Carafoli, E., Rossi, C. S. and Lehninger, A. L., 1965, Uptake of adenine nucleotide by respiring mitochondria during active accumulation of Ca2+ and phosphate, J. Biol. Chem. 240:2254–2261.

    PubMed  CAS  Google Scholar 

  • Charest, R., Blackmore, P. F., Berthon, B., and Exton, J. H., 1983, Changes in free cytosolic Ca2+ in hepatocytes following α1-adrenergic stimulation, J. Biol. Chem. 258:8769–8773.

    PubMed  CAS  Google Scholar 

  • Combettes, L., Berthon, B., Binet, A., and Claret, M., 1986, Glucagon and vasopressin interactions on Ca2+ movements in isolated hepatocytes, Biochem. J. 237:675–683.

    PubMed  CAS  Google Scholar 

  • Connelly, P. A., Parker Botelho, L. H., Sisk, R. B., and Garrison, J. C., 1987, A study of the mechanism of glucagon-induced protein phosphorylation in isolated rat hepatocytes using (Sp)-cAMPS and (Rp-)cAMPS, the stimulatory and inhibitory diastereomers of adenosine cyclic 3’,5’-phosphorothioate, J. Biol. Chem. 262:4324–4332.

    PubMed  CAS  Google Scholar 

  • Hamman, H. C., and Haynes, R. C., Jr., 1983, Elevated intramitochondrial adenine nucleotides and mitochondrial function, Arch. Biochem. Biophys. 223:85–94.

    Article  PubMed  CAS  Google Scholar 

  • Haynes, R. C., Jr., Picking R. A., and Zaks, W. J., 1986, Control of mitochondrial content of adenine nucleotides by submicromolar calcium concentrations and its relationship to hormonal effects, J. Biol. Chem. 261:16121–16125.

    PubMed  CAS  Google Scholar 

  • Keppens, S. and DeWulf, H., 1985, P2-purinergic control of liver glycogenolysis, Biochem. J. 231: 797–799.

    PubMed  CAS  Google Scholar 

  • Meisner, H. and Klingenberg, M., 1968, Efflux of adenine nucleotides from rat liver mitochondria, J. Biol. Chem. 243:3631–3639.

    PubMed  CAS  Google Scholar 

  • Nakazawa, T. Asami, K., Suzuki, H., and Vulowa, O., 1973, Appearance of energy conservation system in rat liver mitochondria during development. The role of adenine nucleotide translocation, J. Biochem. 73:392–406.

    Google Scholar 

  • Nosek, M. T., and Aprille, J. R., 1986, Divalent phosphate is a counter ion for carboxyatractyloside-insensitive adenine nucleotide transport in rat liver mitochondria, Fed. Proc. 45:1924.

    Google Scholar 

  • Sistare, F. D., Picking, R. A., and Haynes, R. C., Jr., 1985, Sensitivity of the response of cytosolic calcium in quin2-loaded rat hepatocytes to glucagon, adenine nucleosides and adenine nucleotides, J. Biol. Chem. 260:12744–12747.

    PubMed  CAS  Google Scholar 

  • Sutton, R. and Pollak, J. K., 1978, The increasing adenine nucleotide concentration and the maturation of rat liver mitochondria during neonatal development, Differentiation 12:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, J. R., Cooper, R. H., and Hoek, J. B., 1981, Role of calcium in the hormonal regulation of liver metabolism, Biochim. Biophys. Acta 639:243–295.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Haynes, R.C. (1989). Calcium as a Hormonal Messenger for Control of Mitochondrial Functions. In: Fiskum, G. (eds) Cell Calcium Metabolism. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5598-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5598-4_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5600-4

  • Online ISBN: 978-1-4684-5598-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics