An Endogenous Source of the Superoxide Anion in the Central Nervous System

  • Carol A. Colton
  • Daniel L. Gilbert
Part of the Basic Life Sciences book series (BLSC, volume 49)


While it is known that oxygen intermediates, i.e., the superoxide radical anion, hydrogen peroxide, and the hydroxyl radical are toxic1–3, their role in pathological processes in the central nervous system (CNS) is not clear. To understand how these reactive oxygen metabolites are involved, two issues must be addressed. First, are there endogenous sources of oxygen intermediates in the CNS? Second, can oxygen intermediates produce functional neuronal changes?


Xanthine Oxidase Platelet Activate Factor Long Term Potentiation Phorbol Myristate Acetate Phorbol Myristate Acetate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Gerschman, D. L. Gilbert, S. W. Nye, P. Dwyer, and W. O. Fenn, Oxygen poisoning and x-irradiation: A mechanism in common, Science 119:623 (1954).PubMedCrossRefGoogle Scholar
  2. 2.
    D. L. Gilbert, ed., “Oxygen and Living Processes: An Interdisciplinary Approach,” Springer-Verlag, New York (1981).Google Scholar
  3. 3.
    B. Halliwell and J. Gutteridge, Oxygen radicals and the nervous system, Trends in Neurosci. 8:22 (1985).CrossRefGoogle Scholar
  4. 4.
    B. Babior, R. Kipnes, and J. Curnutte, Biological defense mechanisms: The production by leucocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    W. Lo and L. Betz, Oxygen free radical reduction of brain capillary rubidium uptake, J. Neurochem. 46:394 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    D. E. Parks, Reperfusion injury in ischemic tissues: Role of oxygen derived free radicals, in: “Oxygen: An Indepth Study of Its Pathophysiology,” S. Gottlieb, I. Longmuir and J. Totter, eds., Undersea Medical Soc., Bethesda, MD (1983).Google Scholar
  7. 7.
    M. S. Patole, A. Swaroop, and T. Ramasarma, Generation of H2O2 in brain mitochondria, J. Neurochem. 47:1 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Betz, Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries, J. Neurochem. 44:574 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Kontos, Oxygen radicals from arachidonate metabolism in abnormal vascular responses, Am. Rev. Respir. Dis. 136:474 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    H. A. Kontos and E. P. Wei, Superoxide production in experimental brain injury, J. Neurosurg. 64:803, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    D. Giulian and T. Baker, Characterization of ameboid microglia isolated from developing mammalian brain, J. Neurosci. 6:2163 (1986).PubMedGoogle Scholar
  12. 12.
    E. Ling, C. Kaur, and W. Wong, Light and electron microscopic demonstration of non-specific esterase in amoeboid microglial cells in the corpus callosum in postnatal rats: A cytochemical link to monocytes, J. Anat. 135:385 (1982).PubMedGoogle Scholar
  13. 13.
    V. Perry, D. Hume, and S. Gordon, Immunocytochemical localization of macrophages and microglia in the adult and developing mouse brain, Neurosci. 15:313 (1985).CrossRefGoogle Scholar
  14. 14.
    C. Colton and D. Gilbert, Production of superoxide anions by a CNS macrophage, the microglia, FEBS Lttrs. 223:284 (1987).CrossRefGoogle Scholar
  15. 15.
    R. Johnston, Jr., Measurement of O2 - secretion by monocytes and macrophages, Methods Enzymol. 105:365 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Fox, Prevention of granulocyte mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylurea, J. Clin. Invest. 74:1456 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    W. Bannister, Superoxide dismutase and disease, in: “The Biology and Chemistry of Active Oxygen,” J. Bannister and W. Bannister, eds., Elsevier, New York (1984).Google Scholar
  18. 18.
    J. Crapo, B. Freeman, B. Barry, J. Turrens, and S. Young, Mechanisms of hyperoxic injury to the pulmonary microcirculation, Physiologist, 26:170 (1983).PubMedGoogle Scholar
  19. 19.
    R. Del Maestro, An approach to free radicals in medicine and biology, Acta Physiol. Scand. Suppl. 492:153 (1980).Google Scholar
  20. 20.
    C. Colton, J. Colton, and D. Gilbert, Changes in synaptic transmission produced by hydrogen peroxide, J. Free Rad. Biol. Med. 2:141 (1986).CrossRefGoogle Scholar
  21. 21.
    T. Pellmar, Electrophysiological correlates of peroxide damage in guinea pig hippocampus in vitro, Brain Res. 364:377 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    C. Colton, L. Fagni, and D. Gilbert, The action of an oxygen intermediate, H2O2 on synaptic modulation in the hippocampus, in preparation.Google Scholar
  23. 23.
    L. Voronin, Long term potentiation in the hippocampus, Neurosci. 10:1051 (1983).CrossRefGoogle Scholar
  24. 24.
    T. Brannan, H. Maker, and I. Raes, Regional distribution of catalase in the adult rat brain, J. Neurochem. 36:307 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    P. H. Chan, M. Yurko, and R. Fishman, Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices, J. Neurochem. 38:525 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Fried, Superoxide dismutase activity in the nervous system, J. Neurosci. Res. 4:435 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Carol A. Colton
    • 1
  • Daniel L. Gilbert
    • 2
  1. 1.Department of PhysiologyGeorgetown UniversityUSA
  2. 2.Laboratory of Biophysics, NINCDSNational Institutes of HealthBethesdaUSA

Personalised recommendations