Advertisement

Oxidation of Quinones by H2O2: Formation of Epoxy- and Hydroxyquinone Adducts and Electronically Excited States

  • Anders Brunmark
  • Enrique Cadenas
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

The cellular activation of quinonoid compounds (diketones with the structure O=C-(C=C-)nC=O requires their reduction by either a one- or two-electron transfer process which can be accomplished by several NADPH or NADH reductases.1,2 The redox features of quinone chemistry have been well characterized3 and their extrapolation to biological processes has furnished much useful information on the toxicological aspects of quinonoid compounds.4,5

Keywords

Quinone Compound Sodium Perborate Tissue Oxidative Injury Triplet Benzophenone Quinonoid Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Yamazaki, Free radicals and enzyme-substrate reactions, in; “Free Radicals in Biology.” W.A. Pryor, ed., vol. III, p. 193, Academic Press, New York (1977).Google Scholar
  2. 2.
    H. Nohl, W. Jordan, and R.J. Youngman, Quinones in biology: Functions in electron transfer and oxygen activation, Adv. Free Radical Biol. Med. 2: 211 (1986).CrossRefGoogle Scholar
  3. 3.
    J.Q. Chambers, Electrochemistry of quinones, in; “The Chemistry of Quinonoid Compounds,” S. Patai, ed., p. 737, John Wiley, New York (1974).Google Scholar
  4. 4.
    M.T. Smith, C.G. Evans, H. Thor, and S. Orrenius, Quinone-induced oxidative injury to cells and tissues, in; “Oxidative Stress”, H. Sies, ed., p.73, Academic Press, London (1985).Google Scholar
  5. 5.
    L. Rossi, G.A. Moore, S. Orrenius, and P.J. O’Brien, Quinone toxicity in hepatocytes without oxidative stress, Arch. Biochem. Biophvs. 251: 25 (1987).CrossRefGoogle Scholar
  6. 6.
    K.T. Finley, The addition and substitution chemistry of quinones, in; “The Chemistry of Quinonoid Compounds,” S. Patai, ed., p. 877, John Wiley, New York (1974).Google Scholar
  7. 7.
    N. Takahashi, J. Schreiber, V. Fischer, and R.P. Mason, Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study, Arch. Biochem. Biophvs. 252: 41 (1987).CrossRefGoogle Scholar
  8. 8.
    A. Brunmark and E. Cadenas. Electronically-excited state generation during the reaction of p-benzoquinone with H2O2. Relation to product formation: 2-OH-and 2,3-epoxy-p-benzoquinone. The effect of GSH. Free Radical Biol. Med. 3: 169 (1987).CrossRefGoogle Scholar
  9. 9.
    W. Flaig, and J.C. Salfeld, Nachweiss der Bildung von Hydroxy-p-Benzochinon als Zwischenprodukt bei der Autoxydation von Hydrochinon. Naturwissenschaften 47: 516 (1960).CrossRefGoogle Scholar
  10. 10.
    A. Brunmark, E. Cadenas, J. Segura-Aguilar, C. Lind, and L. Ernster. DT-Diaphorase-catalyzed two-electron reduction of various p-benzoquinone and 1,4-naphthoquinone epoxides, Free Radical Biol. Med. 4: 000 (1988).Google Scholar
  11. 11.
    W.H. Koppenol and J. Butler, Energetics of interconversion reaction of oxyradicals, Adv. Free Radical Biol. Med. 1:91 (1985).CrossRefGoogle Scholar
  12. 12.
    M. Ginsberg and E. Cadenas, Electronically-excited state generation during diaphorase-catalyzed benzoquinone reduction, Photobiochem. Photobiophvs. 9: 223 (1985).Google Scholar
  13. 13.
    J. Stauff and P. Bartolmes, Chemilumineszenz bei der oxidativen Bildung von Triplett Zuständen des Antrasemichinon- und Anthrachinon-2-sulfonats, Angew. Chem. 82: 321 (1970).CrossRefGoogle Scholar
  14. 14.
    M. Villablanca and G. Cilento, Enzymatic generation of electronically-excited states by electron transfer, Photochem. Photobiol. 42: 591 (1985).CrossRefGoogle Scholar
  15. 15.
    J. Stauff, I. Simo, and W.L. Tsai, Chemilumineszenz von Epoxides, Naturforschung 33c: 769 (1978).Google Scholar
  16. 16.
    M.V. Encinas, E.A. Lissi, and A.F. Olea, Quenching of triplet benzophenone by vitamins E and C and by sulfur-containing aminoacids and peptides, Photochem. Photobiol. 42: 347 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    E. Amouyal and R. Bensasson. Duroquinone triplet reduction in cyclohexane, ethanol and H2O, and by durohydroquinone, J. Chem. Soc.Faradav Trans., 72: 1274 (1976).CrossRefGoogle Scholar
  18. 18.
    E. Amouyal and R. Bensasson, Interaction of duroquinone lowest triplet with amines, J. Chem. Soc., Faradav Trans.,73: 1561 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Anders Brunmark
    • 1
  • Enrique Cadenas
    • 1
  1. 1.Department of Pathology IIUniversity of LinköpingLinköpingSweden

Personalised recommendations