Skip to main content

Oxidation of Quinones by H2O2: Formation of Epoxy- and Hydroxyquinone Adducts and Electronically Excited States

  • Chapter
Oxygen Radicals in Biology and Medicine

Part of the book series: Basic Life Sciences ((BLSC,volume 49))

Abstract

The cellular activation of quinonoid compounds (diketones with the structure O=C-(C=C-)nC=O requires their reduction by either a one- or two-electron transfer process which can be accomplished by several NADPH or NADH reductases.1,2 The redox features of quinone chemistry have been well characterized3 and their extrapolation to biological processes has furnished much useful information on the toxicological aspects of quinonoid compounds.4,5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Yamazaki, Free radicals and enzyme-substrate reactions, in; “Free Radicals in Biology.” W.A. Pryor, ed., vol. III, p. 193, Academic Press, New York (1977).

    Google Scholar 

  2. H. Nohl, W. Jordan, and R.J. Youngman, Quinones in biology: Functions in electron transfer and oxygen activation, Adv. Free Radical Biol. Med. 2: 211 (1986).

    Article  CAS  Google Scholar 

  3. J.Q. Chambers, Electrochemistry of quinones, in; “The Chemistry of Quinonoid Compounds,” S. Patai, ed., p. 737, John Wiley, New York (1974).

    Google Scholar 

  4. M.T. Smith, C.G. Evans, H. Thor, and S. Orrenius, Quinone-induced oxidative injury to cells and tissues, in; “Oxidative Stress”, H. Sies, ed., p.73, Academic Press, London (1985).

    Google Scholar 

  5. L. Rossi, G.A. Moore, S. Orrenius, and P.J. O’Brien, Quinone toxicity in hepatocytes without oxidative stress, Arch. Biochem. Biophvs. 251: 25 (1987).

    Article  Google Scholar 

  6. K.T. Finley, The addition and substitution chemistry of quinones, in; “The Chemistry of Quinonoid Compounds,” S. Patai, ed., p. 877, John Wiley, New York (1974).

    Google Scholar 

  7. N. Takahashi, J. Schreiber, V. Fischer, and R.P. Mason, Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study, Arch. Biochem. Biophvs. 252: 41 (1987).

    Article  CAS  Google Scholar 

  8. A. Brunmark and E. Cadenas. Electronically-excited state generation during the reaction of p-benzoquinone with H2O2. Relation to product formation: 2-OH-and 2,3-epoxy-p-benzoquinone. The effect of GSH. Free Radical Biol. Med. 3: 169 (1987).

    Article  CAS  Google Scholar 

  9. W. Flaig, and J.C. Salfeld, Nachweiss der Bildung von Hydroxy-p-Benzochinon als Zwischenprodukt bei der Autoxydation von Hydrochinon. Naturwissenschaften 47: 516 (1960).

    Article  CAS  Google Scholar 

  10. A. Brunmark, E. Cadenas, J. Segura-Aguilar, C. Lind, and L. Ernster. DT-Diaphorase-catalyzed two-electron reduction of various p-benzoquinone and 1,4-naphthoquinone epoxides, Free Radical Biol. Med. 4: 000 (1988).

    Google Scholar 

  11. W.H. Koppenol and J. Butler, Energetics of interconversion reaction of oxyradicals, Adv. Free Radical Biol. Med. 1:91 (1985).

    Article  CAS  Google Scholar 

  12. M. Ginsberg and E. Cadenas, Electronically-excited state generation during diaphorase-catalyzed benzoquinone reduction, Photobiochem. Photobiophvs. 9: 223 (1985).

    CAS  Google Scholar 

  13. J. Stauff and P. Bartolmes, Chemilumineszenz bei der oxidativen Bildung von Triplett Zuständen des Antrasemichinon- und Anthrachinon-2-sulfonats, Angew. Chem. 82: 321 (1970).

    Article  Google Scholar 

  14. M. Villablanca and G. Cilento, Enzymatic generation of electronically-excited states by electron transfer, Photochem. Photobiol. 42: 591 (1985).

    Article  CAS  Google Scholar 

  15. J. Stauff, I. Simo, and W.L. Tsai, Chemilumineszenz von Epoxides, Naturforschung 33c: 769 (1978).

    CAS  Google Scholar 

  16. M.V. Encinas, E.A. Lissi, and A.F. Olea, Quenching of triplet benzophenone by vitamins E and C and by sulfur-containing aminoacids and peptides, Photochem. Photobiol. 42: 347 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. E. Amouyal and R. Bensasson. Duroquinone triplet reduction in cyclohexane, ethanol and H2O, and by durohydroquinone, J. Chem. Soc.Faradav Trans., 72: 1274 (1976).

    Article  CAS  Google Scholar 

  18. E. Amouyal and R. Bensasson, Interaction of duroquinone lowest triplet with amines, J. Chem. Soc., Faradav Trans.,73: 1561 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Brunmark, A., Cadenas, E. (1988). Oxidation of Quinones by H2O2: Formation of Epoxy- and Hydroxyquinone Adducts and Electronically Excited States. In: Simic, M.G., Taylor, K.A., Ward, J.F., von Sonntag, C. (eds) Oxygen Radicals in Biology and Medicine. Basic Life Sciences, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5568-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5568-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5570-0

  • Online ISBN: 978-1-4684-5568-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics