Genetic and Molecular Analysis of Transposable Elements in Antirrhinum Majus

  • Rosemary Carpenter
  • Andrew Hudson
  • Tim Robbins
  • Jorge Almeida
  • Cathie Martin
  • Enrico Coen
Part of the Basic Life Sciences book series (BLSC, volume 47)


Transposable element activity in Antirrhinum majus has been studied genetically for many years. More recently the genetic analysis has been combined with molecular techniques, leading to a much greater understanding of various properties of these transposons. We have shown that the frequency of transposition of specific transposable elements can be controlled by a number of different factors including the environmental conditions under which the plants are grown and the genetic background. Transposable elements are also able to alter gene expression by imprecise excision, deletions, inversions, and chromosomal rearrangements, thus giving rise to allelic series. The knowledge gained from these studies has enabled transposable elements to be used for gene isolation. In this paper we describe the main features of the behavior of transposable elements in Antirrhinum and how they may be used to study gene action.


Transposable Element Corolla Tube Allelic Series Antirrhinum Majus Excision Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baur, E. (1924) Untersuchungen über das Wesen, die Entstehung und die Vererbung von Rassenunterschieden bei Antirrhinum majus. Bibliotheca Genetica 4:1–70.Google Scholar
  2. 2.
    Bonas, U., H. Sommer, and H. Saedler (1984) The 17 kb Tam1 element of Antirrhinum majus induces a 3 bp duplication upon integration into the chalcone synthase gene. EMBO J. 13:1015–1019.Google Scholar
  3. 3.
    Bonas, U., H. Sommer, B.J. Harrison, and H. Saedler (1984) The transposable element Taml of Antirrhinum majus is 17 kb long. Mol. Gen. Genet. 194:138–143.CrossRefGoogle Scholar
  4. 4.
    Brink, R.A., and I.M. Greenblatt (1954) Diffuse, A pattern gene in Zea mays. Heredity 45:47–50.Google Scholar
  5. 5.
    Carpenter, R., C. Martin, and E.S. Coen (1987) Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus. Mol. Gen. Genet. 207:82–89.CrossRefGoogle Scholar
  6. 6.
    Coen, E.S., R. Carpenter, and C. Martin (1986) Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47:285–296.PubMedCrossRefGoogle Scholar
  7. 7.
    Fincham, J.R.S., and B.J. Harrison (1967) Instability at the Pal locus in Antirrhinum majus. II. Multiple alleles produced by mutation of one original unstable allele. Heredity 22:211–227.CrossRefGoogle Scholar
  8. 8.
    Forkmann, G., and G. Stotz (1981) Genetic control of flavanone 3-hy-droxylase activity and flavonoid 3′-hydroxylase activity in Antirrhinum majus (snapdragon). Z. Naturforsch. 36c:411–416.Google Scholar
  9. 9.
    Harrison, B.J., and R. Carpenter (1973) A comparison of the instabilities at the nivea and pallida loci in Antirrhinum majus. Heredity 31:309–323.CrossRefGoogle Scholar
  10. 10.
    Harrison, B.J., and R. Carpenter (1979) Resurgence of genetic instability in Antirrhinum majus. Mutat. Res. 63:47–66.CrossRefGoogle Scholar
  11. 11.
    Harrison, B.J., and J.R.S. Fincham (1964) Instability at the Pallocus in Antirrhinum majus. I. Effects of environment on frequencies of somatic and germinal mutation. Heredity 19:237–258.CrossRefGoogle Scholar
  12. 12.
    Harrison, B.J., and J.R.S. Fincham (1968) Instability at the Pal locus in Antirrhinum majus. III. A gene controlling mutation frequency. Heredity 23:67–72.CrossRefGoogle Scholar
  13. 13.
    Harrison, B.J., and R.G. Stickland (1980) Precursors and the genetic control of pigmentation. V. Initiation of anthocyanin synthesis in Antirrhinum majus by Botrytis cinerea. Heredity 44:103–109.CrossRefGoogle Scholar
  14. 14.
    Hehl, R., H. Sommer, and H. Saedler (1987) Interaction between the Taml and Tam2 transposable elements of Antirrhinum majus. Mol. Gen. Genet. 207:47–53.CrossRefGoogle Scholar
  15. 15.
    Hudson, A., R. Carpenter, and E.S. Coen (1987) De novo activation of the transposable element Tam2 of Antirrhinum majus. Mol. Gen. Genet. 207:54–57.CrossRefGoogle Scholar
  16. 16.
    Kuckuck, H. (1936) Über vier neue Serien multipler Allele bei Antirrhinum majus. Z.f. indukt. Abst.-u. Verebungsl. 71:429–440.CrossRefGoogle Scholar
  17. 17.
    Martin, C., R. Carpenter, E.S. Coen, and T. Gerats (1987) The control of floral pigmentation in Antirrhinum majus. In Developmental Mutants in Higher Plants, H. Thomas and D. Grierson, eds. Cambridge University Press, pp. 19-52.Google Scholar
  18. 18.
    Martin, C., R. Carpenter, H. Sommer, H. Saedler, and E.S. Coen (1985) Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J. 4:1625–1630.PubMedGoogle Scholar
  19. 19.
    Sommer, H., R. Carpenter, B.J. Harrison, and H. Saedler (1985) The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alterations upon excision. Mol. Gen. Genet. 199:225–231.CrossRefGoogle Scholar
  20. 20.
    Spiribille, P., and G. Forkmann (1982) Genetic control of chalcone synthase activity in flowers of Antirrhinum majus. Phytochemistry 21:763–776.Google Scholar
  21. 21.
    Stubbe, H. (1966) Genetik und Zytologie von Antirrhinum 1. sect Antirrhinum. VEB, Gastav Fischer Verlag, Jena, G.D.R.Google Scholar
  22. 22.
    Upadhyaya, K.C., H. Sommer, E. Krebbers, and H. Saedler (1985) The paramutagenic line niv-44 has a 5kb insert, Tam2, in the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 199:201–207.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Rosemary Carpenter
    • 1
  • Andrew Hudson
    • 1
  • Tim Robbins
    • 1
  • Jorge Almeida
    • 1
  • Cathie Martin
    • 1
  • Enrico Coen
    • 1
  1. 1.AFRC Institute of Plant Science ResearchJohn Innes InstituteNorwichUK

Personalised recommendations