Plant Transposable Elements

  • Oliver Nelson
  • Claire M. Wilson
  • Cosette G. Saslaw

Part of the Basic Life Sciences book series (BLSC, volume 47)

Table of contents

  1. Front Matter
    Pages i-xi
  2. N. Fedoroff, P. Masson, J. Banks, J. Kingsbury
    Pages 1-15
  3. Donald S. Robertson, David W. Morris, Philip S. Stinard, Bradley A. Roth
    Pages 17-42
  4. Peter A. Peterson
    Pages 43-68
  5. Rosemary Carpenter, Andrew Hudson, Tim Robbins, Jorge Almeida, Cathie Martin, Enrico Coen
    Pages 69-80
  6. Jerry L. Kermicle
    Pages 81-89
  7. Peter Starlinger, Barbara Baker, George Coupland, Reinhard Kunze, Jürgen Laufs, Jeff Schell et al.
    Pages 91-99
  8. E. S. Dennis, E. J. Finnegan, B. H. Taylor, T. A. Peterson, A. R. Walker, W. J. Peacock
    Pages 101-113
  9. Alfons Gierl, Heinrich Cuypers, Stephanie Lütticke, Andy Pereira, Zsuzsanna Schwarz-Sommer, Sudhansu Dash et al.
    Pages 115-119
  10. Virginia Walbot, Anne Bagg Britt, Kenneth Luehrsen, Margaret McLaughlin, Christine Warren
    Pages 121-135
  11. N. S. Shepherd, W. F. Sheridan, M. G. Mattes, G. Deno
    Pages 137-147
  12. Karen C. Cone, Robert J. Schmidt, Benjamin Burr, Frances A. Burr
    Pages 149-159
  13. Barbara Baker, George Coupland, Reinhard Hehl, Nina Fedoroff, Horst Lörz, Peter Czernilofsky et al.
    Pages 161-174
  14. Zsuzsanna Schwarz-Sommer, Heinz Saedler
    Pages 175-187
  15. Hugo K. Dooner, Edward Ralston, James English
    Pages 213-226
  16. Hans Sommer, Reinhard Hehl, Enno Krebbers, Ralf Piotrowiak, Wolf-Ekkehard Lönnig, Heinz Saedler
    Pages 227-235
  17. Jeffrey L. Bennetzen, Willis E. Brown, Patricia S. Springer
    Pages 237-250
  18. Venkatesan Sundaresan
    Pages 251-259
  19. John W. Schiefelbein, Victor Raboy, Hwa-Yeong Kim, Oliver E. Nelson
    Pages 261-278
  20. Karen K. Oishi, Michael Freeling
    Pages 289-291
  21. Susan R. Wessler, George Baran, Marguerite Varagona
    Pages 293-303
  22. Benjamin Burr, Frances A. Burr
    Pages 317-323
  23. E. T. Bingham, R. W. Groose, I. M. Ray
    Pages 325-337
  24. Vicki L. Chandler, Luther E. Talbert, Laura Mann, Catherine Faber
    Pages 339-350
  25. Back Matter
    Pages 355-404

About this book


Transposon tagging can work. Even though most of our understand­ ing about the factors that contribute to a successful tagging experiment has been accumulated from a limited number of experiments using different transposable elements in different genetic backgrounds, it is still possible to draw some conclusions regarding the best experimental strategies for gene tagging. In our experience, Spm has proved to be a good element for transposon tagging. The frequency of recovering mutable alleles in­ duced by Spm is not significantly different from that for Ac-Ds or for Mu 6 (summarized in Ref. 22) and varies from about 10- to 10=zr:-8pm has the unique advantage, however, in that all of the members of thiSfumily that have been examined thus far are homologous to each other at the DNA level. Therefore, by combining molecular analysis with genetic segre­ gation, it is possible to identify and isolate alleles that are due to insertions of either autonomous or nonautonomous Spm elements. There are definite steps one can take to increase the chances of de­ tecting a transposition into the gene of interest. The most important step is to select a genetic background in which the desired phenotype will be easy to screen. If the phenotype is not likely to be mutable, then tester lines should be constructed so as to contain flanking markers that can aid in subsequent segregation analyses.


Allele DNA chromosome gene gene expression genes mutagen

Editors and affiliations

  • Oliver Nelson
    • 1
  • Claire M. Wilson
    • 2
  • Cosette G. Saslaw
    • 2
  1. 1.University of Wisconsin-MadisonMadisonUSA
  2. 2.The Council for Research Planning in Biological Sciences, Inc.USA

Bibliographic information