Phosphorus Spiralling in Rivers and River-Reservoir Systems: Implications of a Model

  • J. Denis Newbold


The term spiralling refers to the coupled processes of cycling and downstream transport of nutrients. The intuitive notion of the spiral is, most simply, that of a nutrient cycle that fails to close in place in a stream, but rather is stretched by transport along the longitudinal axis of the stream (Elwood et al. 1983). At a somewhat more complex level, we may envision the ecosystem as a set of compartments representing various organic and inorganic forms of the nutrient, but instead of being boxes, these compartments are strips or tubes lying along the length of the stream. Each tube slides downstream at some characteristic rate, some at the velocity of water, others with geologic slowness. Our smooth spiral is now replaced by an erratic pathway, consisting of lateral exchanges among compartments and varying rates of longitudinal transport.


Nutrient Limitation Standing Stock Headwater Stream Benthic Alga Downstream Reach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage, P. D. 1976. A quantitative study of the invertebrate fauna of the River Tees below Cow Green Reservoir. Freshwat. Biol. 6: 229–240.CrossRefGoogle Scholar
  2. Armitage, P. D. 1984. Environmental changes induced by stream regulation and their effect on lotic macroinvertebrate communities. In: Regulated Rivers. (Ed. by A. Lillehammer and S. J. Saltveit). pp. 139-165. Oslo Univ. Press.Google Scholar
  3. Ball, R. C. and Hooper, F. F. 1963. Translocation of phosphorus in a trout stream ecosystem. In: Radioecology. (Ed. by V. Schultz and A. W. Klement, Jr.). pp. 217–228. Reinhold Publ. Corp., New York.Google Scholar
  4. Baxter, R. M. 1977. Environmental effects of dams and impoundments. Ann. Rev. Ecol. Syst. 8: 255–283.CrossRefGoogle Scholar
  5. Bothwell, M. L. 1985. Phosphorus limitation of lotic periphyton growth rates: An intersite comparison using continuous-flow troughs (Thompson River System, British Columbia). Limnol. Oceonogr. 30: 527–542.CrossRefGoogle Scholar
  6. Bott, T. L. 1983. Primary productivity in streams. In: Stream Ecology. Application and testing of general ecological theory. (Ed. by J. R. Barnes and G. W. Minshall), pp. 29–53. Plenum, N. Y.Google Scholar
  7. Chandler, D. C. 1937. Fate of typical lake plankton in streams. Ecol. Monogr. 7: 445–479.CrossRefGoogle Scholar
  8. Chapra, S. C. 1980. Application of phosphorus loading models to river-run lakes and other incompletely mixed systems. In: Restoration of Lakes and Inland Waters, pp. 329-334. USEPA 440/55-81-010.Google Scholar
  9. Crayton, W. M. and Sommerfeld, M. R. 1981. Impacts of a desert impoundment on the phytoplankton community of the lower Colorado River. pp. 1608–1617. In: Symposium on surface water impoundments, June 2–5, 1980, Minneapolis, MN. (Ed. by H. G. Stefan). American Society of Civil Engineers, New York. 1682 pp.Google Scholar
  10. Cushing, C. E. 1964. Plankton and water chemistry in the Montreal River lake-stream system, Saskatchewan. Ecology 45: 306–313.CrossRefGoogle Scholar
  11. Dècamps, H. J., Capblancq, and Tourenq, J. N. 1984. Lot. In: Ecology of European Rivers. (Ed. by B. A. Whitton). pp. 207-235. Blackwell.Google Scholar
  12. Duffer, W. R. and Dorris, T. C. 1966. Primary productivity in a southern Great Plains stream. Limnol. Oceanogr. 2: 143–151.CrossRefGoogle Scholar
  13. Elser, J. J. and Kimmel, B. L. 1985. Nutrient availability for phytoplankton production in a multiple-impoundment series. Can. J. Fish. Aquat. Sci. 42: 1359–1370.CrossRefGoogle Scholar
  14. Elwood, J. W., Newbold, J. D., Trimble, A. F. and Stark, R. W. 1981. The limiting role of phosphorus in a woodland stream ecosystem: Effects of P enrichment on leaf decomposition and primary producers. Ecology 62: 146–158.CrossRefGoogle Scholar
  15. Elwood, J. W., Newbold, J. D., O’Neill, R. V. and Van Winkle, W. 1983. Resource spiralling: An operational paradigm for analyzing lotic ecosystems. In: The dynamics of lotic ecosystems. (Ed. by T. D. Fontaine, III., and S. M. Bartell) pp. 3-27. Ann Arbor Science.Google Scholar
  16. Fisher, S. G. 1983. Succession in streams. In: Stream ecology. Application and testing of general ecological theory. (Ed. by J. R. Barnes and G. W. Minshall), pp. 7–27. Plenum, N.Y.Google Scholar
  17. Fisher, S. G., Gray, L. J., Grimm, N. B. and Busch, D. E. 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 52: 93–110.CrossRefGoogle Scholar
  18. Fraleigh, P. C. and Wiegert, R. G. 1975. A model explaining successional change in standing crop of thermal blue-green algae. Ecology 56: 656–664.CrossRefGoogle Scholar
  19. Gloss, S. P., Reynolds, R. C., Jr., Mayer, L. M. and Kidd, D. E. 1981. Reservoir influences on salinity and nutrient fluxes in the arid Colorado River basin. In: Symposium on surface water impoundments, June 2-5, 1980, Minneapolis, MN. (Ed. by H. G. Stefan). pp. 1618–1629. American Society of Civil Engineers, New York.Google Scholar
  20. Greenberg, A. E. 1964. Plankton of the Sacramento River. Ecology 45: 40–49.CrossRefGoogle Scholar
  21. Grimard, Y. and Jones, H. G. 1982. Trophic upsurge in new reservoirs: A model for total phosphorus concentrations. Can. J. Fish. Aquat. Sci. 39: 1473–1483.CrossRefGoogle Scholar
  22. Hartman, R. T. and Himes, C. L. 1961. Phytoplankton from Pymatuning Reservoir in downstream areas of the Shenango River. Ecology 42: 180–183.CrossRefGoogle Scholar
  23. Henricson, J. and Müller, K. 1979. Stream regulation in Sweden with some examples from Central Europe. In: The Ecology of Regulated Streams. (Ed. by J. V. Ward and J. A. Stanford), pp. 183–199. Plenum, New York.Google Scholar
  24. Hill, A. R. 1982. Phosphorus and major cation mass balances for two rivers during low summer flows. Freshwat. Biol. 12: 293–304.CrossRefGoogle Scholar
  25. Horner, R. R. and Welch, E. B. 1981. Stream periphyton development in relation to current velocity and nutrients. Can. J. Fish. Aquat. Sci. 38: 449–457.CrossRefGoogle Scholar
  26. Hynes, H. B. N. 1970. The ecology of running waters. University of Toronto Press.Google Scholar
  27. Johnson, A. H., Bouldin, D. R., Goyette, E. A. and Hedges, A. M. 1976. Phosphorus loss by stream transport from a rural watershed: Quantities, processes and sources. J. Environ. Qual. 5: 148–157.CrossRefGoogle Scholar
  28. Keup, L. E. 1968. Phosphorus in flowing waters. Water Research 2: 373–386.CrossRefGoogle Scholar
  29. Kilham, S. S. 1978. Nutrient kinetics of freshwater planktonic algae using batch and semi-continuous culture methods. Mitt. Int. Ver. Theor. Angew. Limnol. 21, p. 147–157.Google Scholar
  30. Kimmel, B. L., Lind, O. T. and Paulson,L. J. In press. Reservoir primary production. In: Perspectives on reservoir ecosystems. (Ed. by K. W. Thornton). John Wiley and Sons, New York.Google Scholar
  31. Klotz, R. L. 1985. Factors controlling phosphorus limitation in stream sediments. Limnol. Oceanogr. 30: 543–553.CrossRefGoogle Scholar
  32. Lack, T. J. 1971. Quantitative studies on the phytoplankton of the Rivers Thames and Kennet at Reading. Freshwat. Biol. 1: 213–224.CrossRefGoogle Scholar
  33. Lean, D. R. S. 1973. Movements of phosphorus between its biologically important forms in lake water. J. Fish. Res. Board Can. 30: 1525–1536.CrossRefGoogle Scholar
  34. Lean, D. R. S. and Nalewajko, C. 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish. Res. Board Can. 33: 1312–1323.CrossRefGoogle Scholar
  35. Lean, D. R. S. and Nalewajko, C. 1979. Phosphorus turnover time and phosphorus demand in large and small lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 120–132.Google Scholar
  36. Lean, D. R. S. and Pick, F. R. 1981. Photosynthetic response of lake plankton to nutrient enrichment: A test for nutrient limitation. Limnol. Oceanogr. 20: 1001–1019.CrossRefGoogle Scholar
  37. Lehman, J. T., Botkin, D. B. and Likens, G. E. 1975. The assumptions and rationale of a computer model of phytoplankton dynamics. Limnol. Oceanogr. 20: 343–364.CrossRefGoogle Scholar
  38. Leonard, R. L., Kaplan, L. A., Elder, J. F., Coats, R. N. and Goldman, C. R. 1979. Nutrient transport in surface runoff from a subalpine watershed, Lake Tahoe Basin, California. Ecol. Monogr. 49: 281–310.CrossRefGoogle Scholar
  39. Leopold, A. 1941. Lakes in relation to terrestrial life patterns. In: A symposium on hydrobiology. pp. 17–22. Univ. Wisc. Press. Madison.Google Scholar
  40. Leopold, L. B., Wolman, M. G. and Miller, J. P. 1964. Fluvial processes in geomorphology. W. H. Freeman, San Francisco.Google Scholar
  41. Likens, G. E. and Bormann, F. H. 1974. Linkages between terrestrial and aquatic ecosystems. Bioscience 24: 447–456.CrossRefGoogle Scholar
  42. Maciolek, J. A. and Tunzi, M. G. 1968. Microseston dynamics in a simple Sierra Nevada lake-stream system. Ecology 49: 60–75.CrossRefGoogle Scholar
  43. Marcus, M. D. 1980. Periphytic community response to chronic nutrient enrichment by a reservoir discharge. Ecology 61: 387–399.CrossRefGoogle Scholar
  44. Margalef, R. 1960. Ideas for a synthetic approach to the ecology of running waters. Int. revue ges. Hydrobiol. 45: 133–153.CrossRefGoogle Scholar
  45. Marzolf, G. R. and Osborne, J. A. 1972. Primary production in a Great Plains reservoir. Verh. Int. Ver. Limnol. 18: 126–133.Google Scholar
  46. Mayer, L. M. and Gloss, S. P. 1980. Buffering of silica and phosphate in a turbid river. Limnol. Oceanogr. 25: 12–22.CrossRefGoogle Scholar
  47. McCullough, J. D. 1978. A study of phytoplankton primary productivity and nutrient concentrations in Livingston Reservoir, Texas. Tex. J. Sci. 30: 377–387.Google Scholar
  48. Megard, R. O. 1981. Effects of planktonic algae on water quality in impoundments of the Mississippi River in Minnesota. In: Symposium on surface water impoundments, June 2-5, 1980, Minneapolis, MN. (Ed. by H. G. Stefan), pp. 1575–1584. American Society of Civil Engineers, New York.Google Scholar
  49. Meyer, J. L. 1980. Dynamics of phosphorus and organic matter during leaf decomposition in a forest stream. Oikos 34: 44–53.CrossRefGoogle Scholar
  50. Meyer, J. L. and Likens, G. E. 1979. Transport and transformation of phosphorus in a forest stream ecosystem. Ecology 60: 1255–1269.CrossRefGoogle Scholar
  51. Minshall, G. W., Petersen, R. C., Cummins, K. W., Bott, T. L., Sedell, J. R., Cushing, C. E. and Vannote, R. L. 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monogr. 53: 1–25.CrossRefGoogle Scholar
  52. Moore, J. W. 1977. Some factors effecting algal densities in a eutrophic farmland stream. Oecologia 29: 257–267.CrossRefGoogle Scholar
  53. Mulholland, P. J., Newbold, J. D., Elwood, J. W., Ferren, L. A. and Webster, J. R. 1985. Phosphorus spiralling in a woodland stream: seasonal variations. Ecology 66: 1012–1023.CrossRefGoogle Scholar
  54. Mulholland, P. J., Newbold, J. D., Elwood, J. W. and Horn, C. L. 1983. The effect of grazing intensity on phosphorus spiralling in autotrophic streams. Oecologia 58: 358–366.CrossRefGoogle Scholar
  55. Neel, J. K. 1963. Impact of reservoirs. In: Limnology in North America. (Ed. by D. G. Frey), pp. 575–593. Madison, Wisconsin.Google Scholar
  56. Newbold, J. D., Elwood, J. W., O’Neill, R. V. and Sheldon, A. L. 1983. Phosphorus dynamics in a woodland stream ecosystem: A study of nutrient spiralling. Ecology 64: 1249–1265.CrossRefGoogle Scholar
  57. Newbold, J. D., Elwood, J. W., O’Neill, R. V. and Van Winkle, W. 1981. Measuring nutrient spiralling in streams. Can. J. Fish. Aquat. Sci. 38: 860–863.CrossRefGoogle Scholar
  58. Newbold, J. D., Mulholland, P. J., Elwood, J. W. and O’Neill, R. V. 1982a. Organic carbon spiralling in stream ecosystems. Oikos 38: 266–272.CrossRefGoogle Scholar
  59. Newbold, J. D., O’Neill, R. V., Elwood, J. W. and Van Winkle, W. 1982b. Nutrient spiralling in streams: Implications for nutrient limitation and invertebrate activity. Amer. Natur. 120: 628–652.CrossRefGoogle Scholar
  60. Ostrofsky, M. L. and Duthie, H. C. 1980. Trophic upsurge and the relationship between phytoplankton biomass and productivity in Smallwood Reservoir, Canada. Can. J. Bot. 58: 1174–1180.CrossRefGoogle Scholar
  61. Parker, C. R. and Voshell, J. R., Jr. 1983. Production of filter-feeding Trichoptera In an impounded and a free-flowing river. Can. J. Zool. 61: 70–87.CrossRefGoogle Scholar
  62. Paulson, L. J. and Baker, J. R. 1981. Nutrient interactions among reservoirs on the Colorado River. In: Symposium on surface water impoundments, June 2–5, 1980, Minneapolis, MN. (Ed. by H. G. Stefan), pp. 1647–1656. American Society of Civil Engineers, New York.Google Scholar
  63. Peters, R. H. 1979. Concentrations and kinetics of phosphorus fractions along the trophic gradient of Lake Memphremagog. J. Fish. Res. Board Can. 36: 970–979.CrossRefGoogle Scholar
  64. Peterson, B. J., Hobbie, J. E., Hershey, A. E., Lock, M. A., Ford, T. E., Vestal, J. R., McKinley, V. L., Hullar, M. A. J., Miller, M. C., Ventullo, R. M. and Volk, G. S. 1985. Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383–1386.PubMedCrossRefGoogle Scholar
  65. Prepas, E. E. 1983. Orthophosphate turnover time in shallow productive lakes. Can. J. Fish. Aquat. Sci. 40: 1412–1418.CrossRefGoogle Scholar
  66. Rhee, G.-Y. 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495–506.Google Scholar
  67. Rigler, F. H. 1973. A dynamic view of the phosphorus cycle in lakes. In: Environmental phosphorus handbook. (Ed. by E. J. Griffith et al.). pp. 539–572. Wiley, New York.Google Scholar
  68. Rigler, F. H. 1979. The export of phosphorus from Dartmoor catchments: A model to explain variations of phosphorus concentrations in streamwater. J. mar. biol. Assoc. U. K. 59: 659–687.CrossRefGoogle Scholar
  69. Riley, E. T. and Prepas, E. E. 1984. Role of internal phosphorus loading in two shallow, productive lakes in Alberta, Canada. Can. J. Fish. Aquat. Sci. 41: 845–855.CrossRefGoogle Scholar
  70. Rittmann, B. E. and McCarty, P. L. 1978. Variable-order model of bacterial-film kinetics. J. Environ. Engin. Div., ASCE 104: 889–899.Google Scholar
  71. Ruttner, F. 1963. Fundamentals of Limnology. Translated by D. G. Frey and F. E. J. Fry. Univ. of Toronto Press. 295 pp.Google Scholar
  72. Skulberg, O. M. 1984. Effects of stream regulation on algal vegetation. In: Regulated rivers. (Ed. by A. Lillehammer and S. J. Saltveit). pp. 107-124. Oslo Univ. Press.Google Scholar
  73. Søballe, D. M. and Bachmann, R. W. 1984. Influence of reservoir transit on riverine algal transport and abundance. Can. J. Fish. Aquat. Sci. 41: 1803–1813.CrossRefGoogle Scholar
  74. Soltero, R. A., Gasperino, A. F. and Graham, W. G. 1975. Chemical and physical characteristics of a eutrophic reservoir and its tributaries: Long Lake, Washington — II. Water Resour. Res. 9: 1059–1064.Google Scholar
  75. Soltero, R. A. and Wright, J. C. 1975. Primary production studies on a new reservoir; Bighorn Lake — Yellowtail Dam, Montana, U. S. A. Freshwat. Biol. 5: 407–421.CrossRefGoogle Scholar
  76. Spence, J. A. and Hynes, H. B. N. 1971. Differences in benthos upstream and downstream of an impoundment. J. Fish. Res. Board Can. 28: 35–43.CrossRefGoogle Scholar
  77. Stanford, J. A. and Ward, J. V. 1983. The effects of mainstream dams on physicochemistry of the Gunnison River, Colorado. In: Aquatic resources management of the Colorado River Ecosystem. (Ed. by V. D. Adams and V. A. Lamarra). pp. 43-56. Ann Arbor Science Publishers.Google Scholar
  78. Stockner, J. G. and Shortreed, K. R. S. 1978. Enhancement of autotrophic production by nutrient addition in a coastal rainforest stream on Vancouver Island. J. Fish. Res. Board Can. 35: 28–34.CrossRefGoogle Scholar
  79. Swale, E. M. F. 1964. A study of the phytoplankton of a calcareous river. J. Evol. 52: 433–446.Google Scholar
  80. Swanson, C. D. and Bachmann, R. W. 1976. A model of algal exports in some Iowa streams. Ecology 57: 1076–1080.CrossRefGoogle Scholar
  81. Tailing, J. F. and Rzoska, J. 1967. The development of plankton in relation to hydrological regime in the Blue Nile. J. Ecol. 55: 637–662.CrossRefGoogle Scholar
  82. Taylor, A. W. and Kunishi, H. M. 1971. Phosphate equilibria on stream sediment and soil in a watershed draining an agricultural region. J. Agr. Food Chem. 19: 827–831.CrossRefGoogle Scholar
  83. Tilman, D. and Kilham, S. S. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semi-continuous culture. J. Phycol. 12: 375–383.Google Scholar
  84. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. and Cushing, C. E. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130–137.CrossRefGoogle Scholar
  85. Vannote, R. L. 1981. The River Continuum: A theoretical construct for analysis of river ecosystems. In: Proceedings of the National Symposium on Freshwater Inflow to Estuaries. Volume II. U. S. Department of the Interior. Fish and Wildlife Service. Biological Services Program. FWS/OBS-81/04 pp. 289-304.Google Scholar
  86. Wallace, J. B., Webster, J. R. and Woodall, W. R. 1977. The role of filter feeders in flowing waters. Arch. Hydrobiol. 79: 506–532.Google Scholar
  87. Ward, J. V. 1976. Comparative limnology of differentially regulated sections of a Colorado mountain river. Arch. Hydrobiol. 78: 319–342.Google Scholar
  88. Ward, J. V. and Stanford, J. A. 1979. Ecological factors controlling stream zoobenthos with emphasis on thermal modification of regulated streams. In: The ecology of regulated streams. (Ed. by J. V. Ward and J. A. Stanford), pp. 35–55. Plenum Press, New York.Google Scholar
  89. Ward, J. V. and Stanford, J. A. 1983. The serial discontinuity concept of lotic ecosystems. In: The dynamics of lotic ecosystems. (Ed. by T. D. Fontaine, III., and S. M. Bartell). pp. 29-41. Ann Arbor Science.Google Scholar
  90. Watts, R. J. and Lamarra, V. A. 1983. The nature and availability of particulate phosphorus to algae in the Colorado River, Southeastern Utah. In: Aquatic resources management of the Colorado River Ecosystem. (Ed. by V. D. Adams and V. A. Lamarra). pp. 161-180. Ann Arbor Science Publishers.Google Scholar
  91. Webster, J. R. 1975. Analysis of potassium and calcium dynamics in stream ecosystems on three southern Appalachian watersheds of contrasting vegetation. Ph.D. thesis, University of Georgia, Athens. 232 pp.Google Scholar
  92. Webster, J. R. and Patten, B. C. 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol. Monogr. 49: 51–72.CrossRefGoogle Scholar
  93. Whalen, S. C., Leathe, S. A., Gregory, R. W. and Wright, J. C. 1982. Physicochemical limnology of the Tongue River Reservoir, Montana. Hydrobiologia 89: 161–176.CrossRefGoogle Scholar
  94. Whitford, L. A. and Schumacher, G. J. 1961. Effect of current on mineral uptake and respiration by a fresh-water alga. Limnol. Oceanogr. 6: 423–425.CrossRefGoogle Scholar
  95. Whitford, L. A. and Schumacher, G. J. 1964. Effect of a current on respiration and mineral uptake in Spirogyra and Oedogonium. Ecology 45: 168–170.CrossRefGoogle Scholar
  96. Wong, S. L. and Clark, B. 1976. Field determination of the critical nutrient concentrations for Cladophora in streams. J. Fish. Res. Board Can. 33: 85–92.CrossRefGoogle Scholar
  97. Wright, J. C. 1967. Effects of impoundments on productivity, water chemistry, and heat budgets of rivers. In: Reservoir fisheries resources, p. 188-199. Symp. Amer. Fish. Soc., Spec. Publ.Google Scholar
  98. Young, W. C., Hannan, H. H. and Tatum, J. W. 1972. The physicochemical limnology of a stretch of the Guadalupe River, Texas, with five main-stream impoundments. Hydrobiologia 40: 297–319.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Denis Newbold
    • 1
  1. 1.Stroud Water Research CenterAcademy of Natural Sciences of PhiladelphiaAvondaleUSA

Personalised recommendations