Are Coherent States the Natural Language of Quantum Theory?

  • John R. Klauder
Part of the NATO ASI Series book series (NSSB, volume 144)


In the view of the author the answer to the question posed in the title is yes. However, since this opinion is offered by one who is hardly unbiased, it is appropriate that some evidence for this viewpoint be offered. This is the purpose of the present article. Our proposal is to offer various fundamental aspects of quantum theory from the perspective of a coherent-state formulation. We hope this presentation will speak for itself and incline the reader, as well, toward a positive response.


Coherent State Path Integral Classical Dynamic Wiener Measure Spin Coherent State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g., J. R. Klauder and B.-S. Skagerstam, “Coherent States,” World Scientific, Singapore (1985).Google Scholar
  2. 2.
    T. T. Truong, Nuovo Cimento Lett. 9: 533 (1974)CrossRefGoogle Scholar
  3. 2a.
    J. Math. Phys. 16:1034 (1975).Google Scholar
  4. 3.
    J. R. Klauder, J. Math. Phys. 8:2392 (1967).ADSCrossRefGoogle Scholar
  5. 4.
    E. H. Lieb, Commun. Math. Phys. 31:327 (1973)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 4a.
    F. A. Berezin, Commun. Math. Phys. 40:153 (1975).Google Scholar
  7. 5.
    I. M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1:48 (1960)ADSMATHCrossRefGoogle Scholar
  8. 5a.
    D. G. Babbitt, J. Math. Phys. 4:36 (1963).MathSciNetADSCrossRefGoogle Scholar
  9. 6.
    K. Ito, “Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,” California U.P., Berkeley (1967), Vol. 2, Part 1, p. 145.Google Scholar
  10. 7.
    I. Daubechies and J. R. Klauder, J. Math. Phys. 26:2239 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 7b.
    J. R. Klauder and I. Daubechies, Phys. Rev. Lett. 52:1161 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 8.
    J. R. Klauder, Coherent State Path Integrals for Unitary Group Representions (AT &T Bell Laboratories preprint).Google Scholar
  13. 9.
    L. D. Faddeev, in “Methods in Field Theory,” eds. R. Bailan and J. Zinn-Justin, North-Holland and World Scientific, Singapore (1981), p. 1.Google Scholar
  14. 10.
    J. R. Klauder, Some Recent Results on Wave Equations, Path Integrals, and Semiclassical Approximations (AT &T Bell Laboratories preprint).Google Scholar
  15. 11.
    See, e.g., R. S. Brodkey, “The Phenomena of Fluid Motions,” Addison-Wesley, Reading (1976), Chap. 9.Google Scholar
  16. 12.
    See, e.g., R. J. Glauber, in “Quantum Optics and Electronics,” eds., C. DeWitt, A. Blandin and C. Cohen-Tannoudji, Gordon and Breach, New York (1964);Google Scholar
  17. 12a.
    J. R. Klauder and E. C. G. Sudarshan, “Fundamentals of Optics,” W. A. Benjamin, New York (1968)Google Scholar
  18. 12b.
    H. M. Nussenzweig, “Introduction to Quantum Optics,” Gordon and Breach, New York (1973).Google Scholar
  19. 13.
    See, e.g., J. Scherk, Rev. Mod. Phys. 47:123 (1975);MathSciNetADSCrossRefGoogle Scholar
  20. 13a.
    D. Amati, C. Bouchiat, and J. L. Gervais, Nuovo Cimento Lett. 2:399 (1969).CrossRefGoogle Scholar
  21. 14.
    See, e.g., “Interacting Bosons in Nuclear Physics,” ed. F. Iachello, Plenum, New York (1979);Google Scholar
  22. 14a.
    J. N. Ginocchio and M. W. Kirson, Nucl. Phys. A 350:31 (1980)MathSciNetCrossRefGoogle Scholar
  23. 14b.
    J. N. Ginocchio and M. W. Kirson, Phys. Rev. Letters 44:1744 (1980).MathSciNetADSCrossRefGoogle Scholar
  24. 15.
    See, e.g., M. J. Davies and E. J. Heller, J. Chem. Phys. 75:3919 (1981);ADSGoogle Scholar
  25. 15a.
    S. Shi, J. Chem. Phys. 79:1343 (1983).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Klauder
    • 1
  1. 1.AT &T Bell LaboratoriesMurray HillUSA

Personalised recommendations