Advertisement

Evolution of Neuronal Ischemic Injury

  • Julio H. Garcia
  • K. A. Conger
Part of the NATO ASI Series book series (NSSA, volume 115)

Abstract

A decrease of blood flow to the mammalian brain sufficiently severe to impair neuronal function constitutes the condition of ischemia. In several situations in human and animals it has been determined that neuronal activity, i.e. action potentials disappears, if cerebral blood flow (CBF) falls to a level below 12–15 m1/100g min (Sundt et al, 1981; Garcia, 1984). However, it has also been observed that this is reversible, as long as blood flow is reestablished within a short period of time. Different ischemic flow thresholds have been experimentally described for neurons. The flow threshold for release of K+ is clearly lower than the one resulting in complete electrical failure (Astrup, 1981).

Keywords

Cerebral Blood Flow Cerebral Ischemia Brain Ischemia Ischemic Injury Serum Glucose Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsenio-Nunez ML, Hossmann KA, Farkas-Bargeton E, Ultrastructural and histochemical investigations of the cerebral cortex of cat during and after complete ischemia, Acta Neuropathol 26: 329 (1973).CrossRefGoogle Scholar
  2. Astrup J, Barbiturate protection in focal cerebral ischemia, Scand J Clin Lab Invest 40: 201 (1980).CrossRefGoogle Scholar
  3. Astrup J, Siesjö B, Symon L, Thresholds in cerebral ischemia: The ischemic penumbra, Stroke 12: 723 (1981).CrossRefGoogle Scholar
  4. Conger KA, Moraes HP, Strong ER, Hino K, Briggs L, Garcia JH, Halsey JH, Jr, Computer controlled blood pressure changes required for steady state oxygen control of partial ischemia in the rat brain cortex. International Society on Oxygen Transport to Tissue. Louisiana Tech University, Ruston, Louisiana, p 36 (1983).Google Scholar
  5. Conger KA, Moraes HP, Strong, ER, Hino K, Briggs L, Garcia JH, Halsey JH Jr, Computer controlled blood pressure changes required for steady state oxygen control of partial ischemia in the rat brain cortex. in: “Oxygen transport to tissue IV”, Bruley D, Bicher HI, Reneau D, eds., Plenum Publ. Corp. (1985).Google Scholar
  6. Garcia JH, Kamijyo Y, Cerebral infarction. Evolution of histopathologic changes after occlusion of a middle cerebral artery in primates, J Neuropathol Exp Neurol 33: 409 (1974).CrossRefGoogle Scholar
  7. Garcia JH, Lossinsky AS, Kauffman FC, Conger KA, Neuronal ischemic injury: Light microscopy, ultrastructure and biochemistry, Acta Neuropathol (Berl) 43: 85 (1978).CrossRefGoogle Scholar
  8. Garcia JH, Ischemic injuries of the brain: Morphologic evolution, Arch Path Lab Med 107: 157 (1983).Google Scholar
  9. Garcia JH, Mitchem HL, Briggs L, Morawetz R, Hudetz AG, Hazelrig J, Halsey JH, Conger KA, Transient focal ischemia in subhuman primates: Neuronal injury as a function of local cerebral blood flow, J Neuropath Exp Neurol 42:44 (1983).Google Scholar
  10. Garcia JH, Lowry SL, Briggs L, Mitchem HL, Morawetz R, Halsey JH, Conger KA, Brain capillaries expand and rupture in areas of ischemia and reperfusion. in: “Cerebrovascular disease” Vol 13, Reivich M, Hurtig HI, eds., Raven Press, New York (1983).Google Scholar
  11. Garcia JH, Experimental ischemic stroke. A review, Stroke 15: 5 (1984).CrossRefGoogle Scholar
  12. Ginsberg MD, Budd WW, Welsh FA, Diffuse cerebral ischemia in the cat: I. Local blood flow during severe ischemia and recirculation, Neurology 3: 482 (1978).Google Scholar
  13. Heiss WD, Flow thresholds of functional and morphological damage of brain tissue, Stroke 14: 329 (1983).CrossRefGoogle Scholar
  14. Hertz L, Features of astrocyte function apparently involved in the response of the CNS to ischemia-hypoxia, J Cereb Blood Flow Metabol 1: 143 (1981).CrossRefGoogle Scholar
  15. Hudgins WR, Garcia JH, Transorbital approach to the middle cerebral artery of the squirrel monkey: A technique for experimental cerebral infarction applicable to ultrastructural studies, Stroke 1: 107 (1970)CrossRefGoogle Scholar
  16. Jenkins LW, Povlishock JT, Lewelt W, Miller JD, Becker DP, The role of postischemic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia, Acta Neuropathol 55: 205 (1981).CrossRefGoogle Scholar
  17. Kalimo H, Garcia JH, Kamijyo Y, Tanaka H, Trump BF, The ultrastructure of “brain death”: II. Electron microscopy of feline cortex after complete ischemia, Virchows Arch B Cell Pathol 25: 297 (1977).Google Scholar
  18. Kamijyo Y, Garcia JH, Cooper J, Temporary MCA occlusion: a model of hemorrhagic and subcortical infarction, J Neuropathol Exp Neurol 36: 338 (1977).CrossRefGoogle Scholar
  19. Longstreth WT, Jr., Inui TS, High blood glucose level on hospital admission and poor neurological recovery after cardiac arrest, Ann Neurol 15: 59 (1984).CrossRefGoogle Scholar
  20. Mohr JP, Lacunes, Stroke 13: 3 (1982).CrossRefGoogle Scholar
  21. Nemoto EM, Bleyaert AL, Stezoski SW, Moossy J, Rao GR, Safar P, Global brain ischemia: a reproducible monkey model, Stroke 8: 558 (1977).CrossRefGoogle Scholar
  22. Rehncrona S, Rosen I, Siesjö BK, Excessive cellular acidosis: an important mechanism of neuronal damage in the brain? Acta Physiol Scand 110: 435 (1980).CrossRefGoogle Scholar
  23. Rossen R, Karat H, Anderson JP, Acute arrest of cerebral circulation in man, Arch Neurol Psychiat 50: 510 (1943).Google Scholar
  24. Sundt TM, Sharborough FW, Piepgras DG, Kearns TP, Messick JM, Jr., O’Fallon WM, Correlation of cerebral blood flow and carotid endarterectomy with results of surgery and hemodynamics of cerebral ischemia, Mayo Clin Proc 56: 533 (1981).Google Scholar
  25. Treasure T, Naftel DC, Conger KA, Garcia JH, Kirklin JW, Blackstone EH, The effect of hypothermic circulatory arrest time on cerebral function, morphology, and biochemistry: An experimental study, J Thorac Cardiovasc Surg 86 (5): 761 (1983).Google Scholar
  26. Welsh FA, Ginsberg MD, Rieder W, Budd WW, Diffuse cerebral ischemia in the cat: II. Regional metabolites during severe ischemia and recirculation, Ann Neurol 3: 493 (1978).CrossRefGoogle Scholar
  27. Yamaguchi T, Waltz AG, Okazaki H, Hyperemia and ischemia in experimental cerebral infarctions: Correlation of histopathology and regional blood flow. Neurology 21: 565 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Julio H. Garcia
    • 1
  • K. A. Conger
    • 1
  1. 1.Departments of Pathology and NeurologyUniversity of AlabamaBirminghamUSA

Personalised recommendations