Skip to main content

Anomalous Conformations of RNA Constituents : 2D NMR and Calculational Studies

  • Chapter
Structure and Dynamics of RNA

Part of the book series: NATO ASI Series ((NSSA,volume 110))

Abstract

Short single-stranded RNA fragments normally display a strong tendency to favour a right-handed helical conformation. Relatively small changes in enthalpy and/or entropy of stacking, induced by minor structural variations may cause a large difference in stacking behaviour in aqueous solution, but do not appear to affect the detailed geometry of the stacked state. Recently developed NMR methods that allow for a determination of the sugar-phosphate backbone geometry along β (O5’-C5’), γ (C5’-C4’), δ (C4’-C3’), and ε (C3’-O3’) are surveyed. At the level of trimers and higher oligomers conformational transmission factors, such as next-nearest-neighbour interactions, may come into play. For example, the trimer U-A¯-U (A¯ = m2 6A) behaves in a fashion that can be predicted from the known stacking properties of its dimer constituents U-A¯ and A¯-U, whereas the trimer A¯-U-A¯ behaves in an entirely different way. In the latter compound the two purines engage in a 1-3 stacking interaction. At the same time the central pyrimidine residue is pushed outside the purine-purine interaction zone (bulge-out).

Several interesting properties of bulges have come to light: (i) a longer alternating pu-py sequence displays multiple bulges, witness A¯-U-A¯-U-A¯; (ii) a strong stacking interaction at its 3’-end does not affect the bulge, for example in A¯-U-A¯-U; (iii) in contrast, the bulge is abandoned in favour of a normal right-handed stacking pattern by a strong stacking interaction at its 5’-end: A¯-A¯-U-A¯; (iv) a self-complementary alternating pu-py sequence, e.g. (A-U)3, is able to convert from a bulged single strand at elevated temperatures into a regular A-type duplex at low temperature. Thus, bulge-out structures may occur either in loops or under conditions where a duplex is forced to open up.

Another interesting conformation is shown by the 3A’-terminal C¯-A¯ in C¯-C¯-A¯ (C¯ = m2 4C), a chemically modified 3’-acceptor of tRNAs. In contrast to the usual right-handed parallel stacking pattern favoured by the C¯-C¯ part, the 3’-terminal A¯ residue prefers to adopt a left-handed antiparallel stacking.

With the aid of molecular-mechanics calculations (AMBER program) various plausible A-U-A and C-C-A models could be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Altona, Reel. Trav. Chim. Pays-Bas 101:413 (1982).

    Article  Google Scholar 

  2. P. P. Lankhorst, C. A. G. Haasnoot, C. Erkelens, and C. Altona, J. Biomol. Struct. Dyns. 1:1387 (1984).

    Google Scholar 

  3. P. P. Lankhorst, C. A. G. Haasnoot, C. Erkelens, and C. Altona, Nucleic Acids Res. 12:5419 (1984).

    Article  Google Scholar 

  4. P. P. Lankhorst, C. A. G. Haasnoot, C. Erkelens, H. P. Westerink, G. A. van der Marel, J. H. van Boom, and C. Altona, Nucleic Acids Res. 13:927 (1985).

    Article  Google Scholar 

  5. C. A. G. Haasnoot, and C. Altona, Nucleic Acids Res. 6:1135 (1979).

    Article  Google Scholar 

  6. J. T. Powell, E. G. Richards, and W. B. Gratzer, Biopolymers 11:235 (1972).

    Article  Google Scholar 

  7. M. J. Lowe, and J. A. Schellman, J. Mol. Biol. 65:91 (1972).

    Article  Google Scholar 

  8. C. S. M. Olsthoorn, C. A. G. Haasnoot, and C. Altona, Eur. J. Biochem. 106:85 (1980).

    Article  Google Scholar 

  9. C. S. M. Olsthoorn, L. J. Bostelaar, J. H. van Boom, and C. Altona, Eur. J. Biochem. 112:95 (1980).

    Article  Google Scholar 

  10. C. S. M. Olsthoorn, J. Doornbos, H. P. M. de Leeuw, and C. Altona, Eur. J. Biochem. 125:367 (1982).

    Article  Google Scholar 

  11. C. Altona, A. J. Hartel, C. S. M. Olsthoorn, H. P. M. de Leeuw, and C. A. G. Haasnoot, in: “Nuclear Magnetic Resonance Spectroscopy in Molecular Biology”, B. Pullman, ed. p. 87, D. Reidel Publishing Co. Dordrecht, Holland (1978).

    Chapter  Google Scholar 

  12. A. J. Hartel, P. P. Lankhorst, and C. Altona, Eur. J. Biochem. 129:343 (1982).

    Article  Google Scholar 

  13. P. P. Lankhorst, C. Erkelens, C. A. G. Haasnoot, and C. Altona, Nucleic Acids Res. 11:7215 (1983).

    Article  Google Scholar 

  14. P. O. P. Ts’o, in: “Basic Principles of Nucleic Acid Chemistry”, P. O. P. Ts’o ed., Academic Press, New York (1974).

    Google Scholar 

  15. C. Altona, in: “Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions”, M. Sundaralingam and S. T. Rao, eds, p. 613, University Park Press, Baltimore (1975).

    Google Scholar 

  16. D. M. Gray, and I. Tinoco jr, Biopolymers 11:1235 (1972).

    Article  Google Scholar 

  17. D. Frechet and J. Gabarro-Arpa, Biochim. Biophys. Acta 609:1 (1980).

    Google Scholar 

  18. IUPAC-IUB Joint Commission on Biochemical Nomenclature, Eur. J. Biochem. 131:9 (1983)

    Article  Google Scholar 

  19. W. Klyne, and V. Prelog, Experientia 16:521 (1960).

    Article  Google Scholar 

  20. C. Altona, and M. Sundaralingam, J. Am. Chem. Soc. 94:8205 (1973).

    Article  Google Scholar 

  21. C. Altona, and M. Sundaralingam, J. Am. Chem. Soc. 95:2333 (1973).

    Article  Google Scholar 

  22. H. P. M. de Leeuw, C. A. G. Haasnoot, and C. Altona, Isr. J. Chem. 20:108 (1980).

    Google Scholar 

  23. F. A. A. M. de Leeuw, P. N. van Kampen, C. Altona, E. Diez, and A. L. Esteban, J. Mol. Struct. 125:67 (1984).

    Article  Google Scholar 

  24. C. A. G. Haasnoot, F. A. A. M. de Leeuw, and C. Altona, Tetrahedron 36:2783 (1980).

    Article  Google Scholar 

  25. C. A. G. Haasnoot, F. A. A. M. de Leeuw, and C. Altona, Bull. Soc. Chim. Belg. 89:125 (1980)

    Article  Google Scholar 

  26. C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw, and C. Altona, Org. Magn. Reson. 15:43 (1981).

    Article  Google Scholar 

  27. A. J. Hartel, G. Wille, J. H. van Boom, and C., Altona, Nucleic Acids Res. 9:1405 (1981).

    Article  Google Scholar 

  28. C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw, and C. Altona, Biopolymers 20:1211 (1981).

    Article  Google Scholar 

  29. F. A. A. M. de Leeuw, and C. Altona, J. Chem. Soc. Perkin II, 375 (1982).

    Google Scholar 

  30. F. A. A. M. de Leeuw, and C. Altona, J. Comp. Chem. 4:428 (1983).

    Article  Google Scholar 

  31. F. A. A. M. de Leeuw, and C. Altona, Int. J. Pept. Protein Res. 20:120 (1982).

    Article  Google Scholar 

  32. J.-R. Mellema, A. K. Jellema, C. A. G. Haasnoot, J. H. van Boom, and C. Altona, Eur. J. Biochem. 141:165 (1984).

    Article  Google Scholar 

  33. J.-R. Mellema, J. M. L. Pieters, G. A. van der Marel, J. H. van Boom, C. A. G. Haasnoot, and C. Altona, Eur. J. Biochem. 143:285 (1984).

    Article  Google Scholar 

  34. F. A. A. M. de Leeuw and C. Altona, Quant. Chem. Progr. Exch. No 463 (1983).

    Google Scholar 

  35. F. A. A. M. de Leeuw, A. A. van Beuzekom, and C. Altona, J. Comp. Chem. 4:438 (1983).

    Article  Google Scholar 

  36. S. Arnott, P. J. Campbell Smith, and R. Chandrasekan, in: “CRC Handbook of Biochemistry and Molecular Biology”, p. 411 (1975).

    Google Scholar 

  37. C.-H. Lee and I. Tinoco Jr, Biophys. Chem. 11:283 (1980).

    Article  Google Scholar 

  38. P. P. Lankhorst, C. M. Groeneveld, G. Wille, J. H. van Boom, C. A. G. Haasnoot, and C. Altona, Recl. Trav. Chim. Pays-Bas 101:253 (1982).

    Article  Google Scholar 

  39. P. P. Lankhorst, G. Wille, J. H. van Boom, C. A. G. Haasnoot, and C. Altona, Nucleic Acids Res. 11:2839 (1983).

    Article  Google Scholar 

  40. P. P. Lankhorst, G. A. van der Marel, G. Wille, J. H. van Boom, and C. Altona, Nucleic Acids Res. 13:3317 (1985).

    Article  Google Scholar 

  41. C. M. Groeneveld, P. P. Lankhorst, and C. Altona, unpublished observations.

    Google Scholar 

  42. J. Doornbos, H. P. M. de Leeuw, C. S. M. Olsthoorn, G. Wille, H. P. Westerink, J. H. van Boom, and C. Altona, Nucleic Acids Res. 11:7517 (1983).

    Article  Google Scholar 

  43. P. Kollman, P. Weiner, and A. Dearing, Biopolymers 20:2583 (1981)

    Article  Google Scholar 

  44. S. J. Weiner, P. A. Kollman, D. A. Case, U. Chandra Singh, C. Ghio, G. Alagona, S. Profeta Jr, and P. Weiner, J. Am. Chem. Soc. 106:765 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Altona, C. (1986). Anomalous Conformations of RNA Constituents : 2D NMR and Calculational Studies. In: van Knippenberg, P.H., Hilbers, C.W. (eds) Structure and Dynamics of RNA. NATO ASI Series, vol 110. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5173-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5173-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5175-7

  • Online ISBN: 978-1-4684-5173-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics