Ultrastructural Studies of Peptide Coexistence in Corticotropin-Releasing Factor- and Arginine-Vasopressin-Containing Neurons

  • Mark H. Whitnall
  • Harold Gainer
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


It has become clear over the last several years that the coexistence of more than one transmitter in the same neuron is a widespread phenomenon in the nervous system, yet the physiological implications of this coexistence are only beginning to be understood (Hökfelt et al., 1984). A complete description of the roles of coexisting neurotransmitters should include (1) knowledge of the locations, actions, and dose-response curves of the receptors for the multiple transmitters, (2) analysis of the quantity and kinetics of release of the transmitters, and (3) determination of whether the release of multiple transmitters in the same cell can be independently regulated. An important determinant of the regulation of release of transmitters is their intracellular packaging. If different transmitters are localized in different populations of secretory vesicles in the same nerve ending, then the possibility of separate regulation of their release exists. However, if different transmitters are packaged in the same secretory vesicles, then independent regulation of their release by the nerve ending is unlikely.


Corticotropin Release Factor Secretory Vesicle Portal Blood Median Eminence Anterior Pituitary Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoni, F. A., 1984, Novel ligand specificity of pituitary vasopressin receptors in the rat, Neuroen-docrinology 39:186–188.Google Scholar
  2. Antoni, F. A., Palkovits, M., Makara, G. B., Linton, E. A., Lowry, P. J., and Kiss, J. Z., 1983, Immunoreactive corticotropin-releasing hormone in the hypothalamoinfundibular tract, Neuroen-docrinology 36:415–423.Google Scholar
  3. Antoni, F. A., Holmes, M. C., Makara, G. B., Karteszi, M., and Laszlo, F. A., 1984, Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor, Peptides 5:519–522.PubMedCrossRefGoogle Scholar
  4. Antoni, F. A., Holmes, M. C., and Kiss, J. Z., 1985, Pituitary binding of vasopressin is altered by experimental manipulations of the hypothalamo-pituitary-adrenocortical axis in normal as well as homozygous (di/di) Brattleboro rats, Endocrinology 117:1293–1299.PubMedCrossRefGoogle Scholar
  5. Armstrong, W. E., Warach, S., Hatton, G. I., and McNeill, T. H., 1980, Subnuclei in the rat hypo-thalamic paraventricular nucleus. A cytoarchitectural, horseradish perioxidase and immunocyto-chemical analysis, Neuroscience 5:1931–1958.PubMedCrossRefGoogle Scholar
  6. Beauvillain, J.-C, Tramu, G., and Garaud, J.-C., 1984, Coexistence of substances related to enkephalin and somatostatin in granules of the guinea-pig median eminence: Demonstration by use of colloidal gold immunocytochemical methods, Brain Res. 301:389–393.PubMedCrossRefGoogle Scholar
  7. Ben-Barak, Y., Russell, J. T., Whitnall, M. H., Ozato, K., and Gainer, H., 1985, Neurophysin in the hypothalamo-neurohypophysial system. I. Production and characterization of monoclonal antibodies, J. Neurosci. 5:81–97.PubMedGoogle Scholar
  8. Bendayan, M., and Zollinger, M., 1983, Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique, J. Histochem. Cytochem. 31:101–109.PubMedCrossRefGoogle Scholar
  9. Bloom, F. E., Battenberg, E. L. F., Rivier, J., and Vale, W., 1982, Corticotropin releasing factor (CRF) immunoreactive neurons and fibers in rat hypothalamus, Regul. Peptides 4:43–48.CrossRefGoogle Scholar
  10. Bruhn, T. O., Sutton, R. E., Rivier, C. L., and Vale, W. W., 1984, Corticotropin-releasing factor regulates proopiomelanocortin messenger ribonucleic acid levels in vivo, Neuroendocrinology 39:170–1PubMedCrossRefGoogle Scholar
  11. Bugnon, C., Fellman, D., Gouget, A., and Cardot, J., 1982, Corticoliberin in rat brain: Immunocytochemical identification and localization of a novel neuropeptide system, Neurosci. Lett. 30:25–30.PubMedCrossRefGoogle Scholar
  12. Bugnon, C., Fellmann, D., and Gouget, A., 1983, Changes in corticoliberin and vasopressin-like immunoreactivities in the zona externa of the median eminence in adrenalectomized rats. Immunocytochemical study, Neurosci. Lett. 37:43–49.PubMedCrossRefGoogle Scholar
  13. Burlet, A., Tonon, M.-C., Tankosic, P., Coy, D., and Vaudry, H., 1983, Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophysial peptides in the brain of Brattleboro and Long Evans rats, Neuroendocrinology 37:64–72.PubMedCrossRefGoogle Scholar
  14. Castel, M., Gainer, H., and Dellman, H.-D., 1984, Neuronal secretory systems, Int. Rev. Cytol. 88:303–459.PubMedCrossRefGoogle Scholar
  15. Castel, M., Varndell, I. M., Aguilera, G., and Polak, J. M., 1985, Colocalization of corticotropin releasing factor (CRF) and the neurohypophysial hormones, Neurosci. Lett. (Suppl.) 22:118.Google Scholar
  16. Chateau, M., Burlet, A., and Marchetti. J., 1974, La “vasopressine-like” du lobe anterieur de l’hypophyse: Isolement et identification par son activite biologique et immunologique, J. Physiol. (paris) 68:10B-11B.Google Scholar
  17. Coulter, H. D., Elde, R. P., and Unvezagt, S. L., 1981, Co-localization of neurophysin-and enkephalin-like immunoreactivity in cat pituitary, Peptides 2(Suppl. 1):51–55.PubMedCrossRefGoogle Scholar
  18. Cox, B. M., Ghazarossian, V. E., and Goldstein, A., 1980, Levels of immunoreactive dynorphin in brain and pituitary of Brattleboro rats, Neurosci. Lett. 20:85–88.PubMedCrossRefGoogle Scholar
  19. Dreyfuss, F., Burlet, A., Tonon, M. C., and Vaudry, H., 1984, Comparative immunoelectron microscopic localization of corticotroping-releasing factor (CRF-41) and oxytocin in the rat median eminence, Neuroendocrinology 39:284–287.PubMedCrossRefGoogle Scholar
  20. Dube, D., Leclerc, R., and Pelletier, G., 1976, Electron microscopic immunohistochemical localization of vasopressin and neurophysin in the median eminence of normal and adrenalectomized rats, Am. J.Anat. 147:103–108.PubMedCrossRefGoogle Scholar
  21. Geis, R., Weber, E., Martin, R., and Voigt, K. H., 1982, Hypothalamo-posterior pituitary system in Brattleboro rats: Immunoreactive levels of leucine-enkephalin, dynorphin (1–17), dynorphin (1–8) and α-neo-endorphin, Life Sci. 31:1809–1812.PubMedCrossRefGoogle Scholar
  22. Gibbs, D. M., 1985a, Measurement of hypothalamic corticotropin-releasing factors in hypophyseal portal blood, Fed. Proc. 44:203–206.PubMedGoogle Scholar
  23. Gibbs, D. M., 1985b, Inhibition of corticotropin release during hypothermia: The role of corticotropin-releasing factor, vasopressin, and oxytocin, Endocrinology 116:723–727.PubMedCrossRefGoogle Scholar
  24. Giguere, V., and Labrie, F., 1982, Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin releasing factor (CRF) in rat anterior pituitary cells in culture, Endocrinology 111:1752–1754.PubMedCrossRefGoogle Scholar
  25. Gillies, G., and Lowry, P., 1979, Corticotropin releasing factor may be modulated by vasopressin, Nature 278:463–464.PubMedCrossRefGoogle Scholar
  26. Gillies, G. E., Linton, E. A., and Lowry, P. J., 1982, Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin, Nature 299:355–357.PubMedCrossRefGoogle Scholar
  27. Gillies, G. E., Puri, A., Linton, E. A., and Lowry, P. J., 1984, Comparative chromatography of hypothalamic corticotropin-releasing factors, Neuroendocrinology 38:17–24.PubMedCrossRefGoogle Scholar
  28. Hökfelt, T., Fahrenkrug, J., Tatemoto, K., Mutt, V., Werner, S., Hulting, A.-L., Terenius, L., and Chang, K. J., 1983, The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: Possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion, Proc. Natl. Acad. Sci. U.S.A. 80:895–898.PubMedCrossRefGoogle Scholar
  29. Hökfelt, T., Johansson, O., and Goldstein, M., 1984, Chemical anatomy of the brain, Science 225:1326–1334.PubMedCrossRefGoogle Scholar
  30. Holmes, M. C., Antoni, F. A., and Szentendrei, T., 1984, Pituitary receptors for corticotropin-releasing factor: No effect of vasopressin on binding or activation of adenylate cyclase, Neuroendocrinology 39:162–169.PubMedCrossRefGoogle Scholar
  31. Holmes, M. C., Antoni, F. A., Aguilera, G., and Catt, K. J., 1986, Magnocellular axons in passage through the median eminence release vasopressin, Nature 319:326–329.PubMedCrossRefGoogle Scholar
  32. Ixart, G., Alonso, G., Szafarzyk, A., Malaval, F., Nouguier-Soule, J., and Assenmacher, I., 1982, Adrenocorticotropic regulations after bilateral lesions of the paraventricular or supraoptic nuclei and in Brattleboro rats, Neuroendocrinology 35:270–276.PubMedCrossRefGoogle Scholar
  33. Kiss, J. Z., Mezey, E., and Skirboll, L., 1984, Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy, Proc. Natl. Acad. Sci. U.S.A. 81:1854–1858.PubMedCrossRefGoogle Scholar
  34. Koch, B., and Lutz-Bucher, B., 1985, Specific receptors for vasopressin in the pituitary gland: Evidence for down-regulation and desensitization to adrenocorticotropin-releasing factors, Endocrinology 116:671–676.PubMedCrossRefGoogle Scholar
  35. Lechan, R. M., Nestler, J. L., and Jacobson, S., 1982, The tuberoinfundibular system of the rat as demonstrated by immunohistochemical localization of retrogradely transported wheat germ agglu-tinin (WGA) from the median eminence, Brain Res. 245:1–15.PubMedCrossRefGoogle Scholar
  36. Leranth, C., Antoni, F. A., and Palkovits, M., 1983, Ultrastructural demonstration of ovine CRF-like immunoreactivity (oCRF-LI) in the rat, Regul. Peptides 6:179–188.CrossRefGoogle Scholar
  37. Linton, E. A., Tilders, F. J. H., Hodgkinson, S., Berkenbosch, F., Vermes, I., and Lowry, P. J., 1985, Stress-induced secretion of adrenocorticotropin in rats is inhibited by administration of antisera to ovine corticotropin-releasing factor and vasopressin, Endocrinology 116:966–970.PubMedCrossRefGoogle Scholar
  38. Liposits, Z., Gores, T., Setalo, G., Lenguari, I., Flerko, B., Vigh, S., and Sehally, A. V., 1983, Ultrastructural characteristics of immunolabeled, corticotropin releasing factor (CRF)-synthesizing neurons in the rat brain, Cell Tissue Res. 229:191–196.PubMedCrossRefGoogle Scholar
  39. Lutz-Bucher, B., and Koch, B., 1983, Characterization of specific receptors for vasopressin in the pituitary gland, Biochem. Biophys. Res. Commun. 115:492–498.PubMedCrossRefGoogle Scholar
  40. Makara, G. B., 1985, Mechanisms by which stressful stimuli activate the pituitary adrenal system, Fed. Proc. 44:149–153.PubMedGoogle Scholar
  41. Martin, R., Geis, R., Holl, R., Schäfer, M., and Voigt, K. H., 1983, Coexistence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: Immunoreactive methionine5-en-kephalin-, Ieucine5-enkephalin-and cholecystokinin-like substances, Neuroscience 8:213–227.PubMedCrossRefGoogle Scholar
  42. Martini, L., 1966, Neurohypophysis and anterior pituitary activity, in: The Pituitary Gland, Vol. 3 (G. W. Harris and B. T. Donovan, eds.), University of California Press, Berkeley, pp. 535–577.Google Scholar
  43. Merchenthaler, I., Vigh, S., Petrusz, P., and Schally, A. V., 1982, Immunocytochemical localization of corticotropin-releasing factor (CRF) in rat brain, Am. J. Anat. 165:385–396.PubMedCrossRefGoogle Scholar
  44. Molineaux, C. J., Feuerstein, G., Faden, A. L., and Cox, B. M., 1982, Distribution of immunoreactive dynorphin in discrete brain nuclei; comparison with vasopressin, Neurosci. Lett. 33:179–184.PubMedCrossRefGoogle Scholar
  45. Morris, J. F., 1982, The Brattleboro magnocellular neurosecretory system: A model for the study of peptidergic neurons, in: The Brattleboro Rat. Annals of the New York Academy of Sciences, Vol. 394 (H. W. Sokol and H. Valtin, eds.), The New York Academy of Sciences, New York, pp. 54–71.Google Scholar
  46. Nakane, T., Audhya, T., Kanie, N., and Hollander, C. S., 1985, Evidence for a role of endogenous corticotropin-releasing factor in cold, ether, immobilization, and traumatic stress, Proc. Natl. Acad. Sci. U.S.A. 82:1247–1251.PubMedCrossRefGoogle Scholar
  47. Newman, G. R., Jasani, B., and Williams, E. D., 1983, A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope, Histochem. J. 15:543–555.PubMedCrossRefGoogle Scholar
  48. Olschowka, J. A., O’Donohue, T. L., Mueller, G. P., and Jacobowitz, D. M., 1982, The distribution of corticotropin releasing factor-like immunoreactive neurons in rat brain, Peptides 3:995–1015.PubMedCrossRefGoogle Scholar
  49. Pelletier, G., Steinbusch, H. W. M., and Verhofstad, A. A. J., 1981, Immunoreactive substance P and serotonin present in the same dense vesicles, Nature 293:71–72.PubMedCrossRefGoogle Scholar
  50. Pelletier, G., Desy, L., Cote, J., Lefevre, G., Vaudry, G., and Labrie, F., 1982, Immunoelectron microscopic localization of corticotropin-releasing factor in the rat hypothalamus, Neuroendocri-nology 35:402–404.Google Scholar
  51. Plotsky, P. M., 1985, Hypophyseotropic regulation of adenohypophyseal adrenocorticotropin secretion, Fed. Proc. 44:207–213.PubMedGoogle Scholar
  52. Plotsky, P. M., Bruhn, T. O., and Vale, W., 1984, Central modulation of immunoreactive corticotropin-releasing factor secretion by arginine vasopressin, Endocrinology 115:1639–1641.PubMedCrossRefGoogle Scholar
  53. Plotsky, P. M., Bruhn, T. O., and Otto, S., 1985, Central modulation of immunoreactive arginine vasopressin and oxytocin secretion into the hypophysial-portal circulation by corticotropin-releasing factor, Endocrinology 116:1669–1671.PubMedCrossRefGoogle Scholar
  54. Rivier, C., Rivier, J., and Vale, W., 1982, Inhibition of adrenocorticotropic hormone secretion in the rat by immunoneutralization of corticotropin-releasing factor, Science 218:377–379.PubMedCrossRefGoogle Scholar
  55. Rivier, C., Rivier, J., Mormede, P., and Vale, W., 1984, Studies of the nature of the interaction between vasopressin and corticotropin-releasing factor on adrenocorticotropin release in the rat, Endocrinology 115:882–886.PubMedCrossRefGoogle Scholar
  56. Rivier, J., Rivier, C., and Vale, W., 1984, Synthetic competitive antagonists of corticotropin-releasing factor: Effect on ACTH secretion in the rat, Science 224:889–891.PubMedCrossRefGoogle Scholar
  57. Robinson, A. G., Seif, S. M., Verbalis, J. G., and Brownstein, M. J., 1983, Quantitation of changes in the content of neurohypophyseal peptides in hypothalamic nuclei after adrenalectomy, Neu-roendocrinology 36:347–350.Google Scholar
  58. Rock, J. P., Oldfield, F. M., Schulte, H. M., Gold, P. W., Kornbluth, P. L., Loriaux, L., and Chrousos, G. P., 1984, Corticotropin releasing factor administered into the ventricular CSF stimulates the pituitary-adrenal axis, Brain Res. 323:365–368.PubMedCrossRefGoogle Scholar
  59. Russell, J. T., Brownstein, M. J., and Gainer, H., 1980, [35S]Cysteine-labeled peptides transported to the neurohypophyses of adrenalectomized, lactating, and Brattleboro rats, Brain Res. 201:227–234.PubMedCrossRefGoogle Scholar
  60. Sawchenko, P. E., and Swanson, L. W., 1985, Localization, colocalization, and plasticity of corticotropin-releasing factor immunoreactivity in rat brain, Fed. Proc. 44:221–227.PubMedGoogle Scholar
  61. Sawchenko, P. E., Swanson, L. W., and Vale, W., 1984a, Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat, Proc. Natl. Acad. Sci. U.S.A. 81:1883–1887.PubMedCrossRefGoogle Scholar
  62. Sawchenko, P. E., Swanson, L. W., and Vale, W. W., 1984b, Corticotropin-releasing factor: Co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat, J. Neurosci. 4:1118–1129.PubMedGoogle Scholar
  63. Schipper, J., Werkman, T. R., and Tilders, F. J. H., 1984, Quantitative immunocytochemistry of corticotropin-releasing factor (CRF). Studies on nonbiological models and on hypothalamic tissues of rats after hypophysectomy, adrenalectomy, and dexamethasone treatment, Brain Res. 293:111–118.PubMedCrossRefGoogle Scholar
  64. Silverman, A., and Zimmerman, E. A., 1975, Ultrastructural immunocytochemical localization of neurophysin and vasopressin in the median eminence and posterior pituitary of the guinea pig, Cell Tissue Res. 159:291–301.PubMedCrossRefGoogle Scholar
  65. Sokol, H. W., and Valtin, H. (eds.), 1982, The Brattleboro Rat. Annals of the New York Academy of Sciences, Vol. 394, The New York Academy of Sciences, New York.Google Scholar
  66. Stillman, M. A., Recht, L. D., Rosario, S. L., and Zimmerman, E. A., 1977, The effects of adrenalectomy and glucocorticoid replacement on vasopressin and vasopressin-neurophysin in the zona externa of the median eminence of the rat, Endocrinology 101:42–49.PubMedCrossRefGoogle Scholar
  67. Stoeckel, M. E., Porte, A., Klein, M. J., and Cuello, A. C., 1982, Immunocytochemical localization of substance P in the neurohypophysis and hypothalamus of the mouse compared with the distribution of other neuropeptides, Cell Tissue Res. 223:533–544.PubMedCrossRefGoogle Scholar
  68. Suda, T., Tamori, N., Tozawa, F., Mouri, T., Demura, H., and Shizume, K., 1983, Effects of bilateral adrenalectomy on immunoreactive corticotropin-releasing factor in the rat median eminence and intermediate-posterior pituitary, Endocrinology 113:1182–1184.PubMedCrossRefGoogle Scholar
  69. Swanson, L. W., and Kuypers, H. G. J. M., 1980, The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods, J. Comp. Neurol. 194:555–570.PubMedCrossRefGoogle Scholar
  70. Swanson, L. W., Sawchenko, P. E., Rivier, J., and Vale, W. W., 1983, Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunocyto-chemical study, Neuroendocrinology 36:165–186.PubMedCrossRefGoogle Scholar
  71. Tramu, G., and Pillez, A., 1982, Localisation immunohistochimique des terminaisons nerveuses à corticoliberine (CRF) dans 1’eminence mediane du cobaye et du rat, C.R. Acad. Sci. (Paris) 294:107–114.Google Scholar
  72. Tramu, G., Croix, C., and Pillez, A., 1983, Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material, Neuroendocrinology 37:467–469.PubMedCrossRefGoogle Scholar
  73. Turkelson, C. M., Thomas, C. R., Arimura, A., Chang, D., Chang, J. K., and Shimizu, M., 1982, In vitro potentiation of the ability of synthetic ovine corticotropin-releasing factor by arginine vasopressin, Peptides 3:111–113.PubMedCrossRefGoogle Scholar
  74. Vale, W., and Rivier, C., 1977, Substances modulating the secretion of ACTH by cultured anterior pituitary cells, Fed. Proc. 36:2049–2099.Google Scholar
  75. Vale, W., Spiess, J., Rivier, C., and Rivier, J., 1981, Characterization of a 41-residue ovine hypo-thalamic peptide that stimulates secretion of corticotropin and β-endorphin, Science 213:1394–1397.PubMedCrossRefGoogle Scholar
  76. Vale, W. W., Rivier, C., Spiess, J., and Rivier, J., 1983a, Corticotropin releasing factor, in: Brain Peptides (D. Krieger, J. B. Martin, and M. J. Brownstein, eds.), John Wiley & Sons, New York, pp. 961–974.Google Scholar
  77. Vale, W., Vaughan, J., Smith, M., Yamamota, G., Rivier, J., and Rivier, C., 1983b, Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells, Endocrinology 113:1121–1131.PubMedCrossRefGoogle Scholar
  78. Vanderhaeghen, J. J., Lotstra, F., DeMey, J., and Gillies, C., 1980, Immunohistochemical localization of cholecystokinin-and gastrin-like peptides in the brain and hypophysis of the rat, Proc. Natl. Acad. Sci. U.S.A. 77:1190–1194.PubMedCrossRefGoogle Scholar
  79. Vandesande, F., DeMey, J., and Dierickx, K., 1974, Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibers of the external zone of the median eminence of the rat, Cell Tissue Res. 151:187–200.PubMedCrossRefGoogle Scholar
  80. Watkins, W. B., Schwabedal, P., and Bock, R., 1974, Immunohistochemical demonstration of a CRF-associated neurophysin in the external zone of the rat median eminence, Cell Tissue Res. 152:411–421.PubMedCrossRefGoogle Scholar
  81. Watson, S. J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E., Nilaver, G., and van Wimersma Greidanus, T. B., 1983, Dynorphin and vasopressin: Common localization in magnocellular neurons, Science 216:85–87.CrossRefGoogle Scholar
  82. Westlund, K. N., Aguilera, G., and Childs, G. V., 1985, Quantification of morphological changes in pituitary corticotropes produced by in vivo corticotropin-releasing factor stimulation and adrenalectomy, Endocrinology 116:439–445.PubMedCrossRefGoogle Scholar
  83. Whitnall, M. H., Gainer, H., Cox, B. M., and Molineaux, C. J., 1983, Dynorphin-A-(l-8) is contained within vasopressin neurosecretory vesicles in rat pituitary, Science 222:1137–1139.PubMedCrossRefGoogle Scholar
  84. Whitnall, M. H., Castel, M., Key, S., and Gainer, H., 1985a, Immunocytochemical identification of dynorphin-containing vesicles in Brattleboro rats, Peptides 6:241–247.PubMedCrossRefGoogle Scholar
  85. Whitnall, M. H., Mezey, E., and Gainer, H., 1985b, Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles, Nature 317:248–250.PubMedCrossRefGoogle Scholar
  86. Whitnall, M. H., Key, S., Ben-Barak, Y., Ozato, K., and Gainer, H., 1985c, Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxy-tocinergic and vasopressinergic neurons, J. Neurosci. 5:98–109.PubMedGoogle Scholar
  87. Wiegand, S. J., and Price, J. L., 1980, The cells of origin of afferent fibers to the median eminence in the rat, J. Comp. Neurol. 192:1–19.PubMedCrossRefGoogle Scholar
  88. Wolfson, B., Manning, R. W., Davis, L. G., Arentzen, R., and Baldino, F., Jr., 1985, Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy, Nature 315:59–61.PubMedCrossRefGoogle Scholar
  89. Wynn, P. C., Aguilera, G., Morell, J., and Catt, K. J., 1983, Properties and regulation of high-affinity pituitary receptors for corticotropin-releasing factor, Biochem. Biophys. Res. Commun. 110:602–608.PubMedCrossRefGoogle Scholar
  90. Wynn, P. C., Harwood, J. P., Catt, K. J., and Aguilera, G., 1985, Regulation of corticotropin-releasing factor (CRF) receptors in the rat pituitary gland: Effects of adrenalectomy on CRF receptors and corticotroph responses, Endocrinology 116:1653–1659.PubMedCrossRefGoogle Scholar
  91. Yates, F. E., and Maran, J. W., 1974, Stimulation and inhibition of adrenocorticotropin release, in: Handbook of Physiology, Section 7: Endocrinology, Vol. 4, Part 2 (E. Knobil and W. H. Sawyer, eds.), American Physiological Society, Washington, pp. 367–404.Google Scholar
  92. Yates, F. E., Russell, S. M., Dallman, M. F., Hedge, G. A., McCann, S. M., and Dhariwal, A. P. S., 1971, Potentiation by vasopressin of corticotropin release induced by corticotropin-releasing factor, Endocrinology 88:2–15.CrossRefGoogle Scholar
  93. Zamir, N., Zamir, D., Eiden, L. E., Palkovits, M., Brownstein, M. J., Eskay, R. L., Weber, E., Faden, A. I., and Feuerstein, G., 1985, Methionine and leucine enkephalin in rat neurohypophysis: Different responses to osmotic stimuli and T2 toxin, Science 228:606–608.PubMedCrossRefGoogle Scholar
  94. Zimmerman, E. A., Stillman, M. A., Recht, L. D., Antunes, J. L., Carmel, P. W., and Goldsmith, P. C., 1977, Vasopressin and corticotropin-releasing factor: An axonal pathway to portal capillaries in the zona externa of the median eminence containing vasopressin and its interaction with adrenal corticoids, Ann. N.Y. Acad. Sci. 297:405–419.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Mark H. Whitnall
    • 1
  • Harold Gainer
    • 1
  1. 1.Laboratory of Neurochemistry and Neuroimmu-nologyNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUSA

Personalised recommendations