Skip to main content

Compensation of Lesion-Induced Changes in Cerebral Metabolism and Behaviour by Striatal Neural Implants in a Rat Model of Huntington’s Disease

  • Chapter
Brain Plasticity, Learning, and Memory

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 28))

Abstract

There now exists ample evidence that the capacity of the adult CNS for functional recovery after large long-term lesions can be promoted by implants of foetal brain tissue (see, e.g., Björklund and Stenevi, 1979; Björklund et al., 1980; Dunnett et al., 1981a,b, 1982; Perlow et al., 1979; Gash and Sladek, 1979; Freed et al., 1980; Krieger et al., 1980; Gage et al., 1983, 1984; Deckel et al., 1983; Labbe et al., 1983; Isacson et al., 1984; Fine et al., this volume). The use of neural grafting as an experimental technique complements lesion and stimulation experiments in neurobiology. In the assessment of lesion-induced changes in the rat it has been investigated to what extent the grafting of neural tissue to the young lesioned or aged impaired animal can create a sufficient condition for functional recovery (see Björklund et al., 1983; Gage et al., 1983, 1984). Functional recovery after lesion-induced changes has been correlated with histological, neurochemical, physiological and metabolic parameters sometimes giving new insights into the mode of operation of certain neural circuitries or transmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, A.J., Björklund, A., Stenevi, U., and Carlstedt, T., 1984, Fetal mesencephalic neurons survive and extend long axons across PNS grafts inserted into the adult rat striatum. Neurosci. Lett., 45:53.

    Article  Google Scholar 

  • Aldinio, C., French, E.D. and Schwarcz, R., 1983, The effects of intra hippocampal ibotenic acid and their blockade by (-)2-amino-7 phospho-nohepatonic acid: morphological and electroencephalographical analysis. Exp. Brain Res., 51:36.

    Article  Google Scholar 

  • Bird, E.D., 1980, Chemical pathology of Huntington’s disease, Ann. Rev. Pharmacol. Toxicol., 20:533.

    Article  Google Scholar 

  • Björklund, A., Schmidt, R.H., and Stenevi, U., 1980, Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra, Cell Tiss. Res., 212:39.

    Article  Google Scholar 

  • Björklund, A., and Stenevi, U., 1979, Reconstruction of the nigro striatal dopamine pathways by intracerebral nigral transplants, Brain Res., 177:555.

    Article  Google Scholar 

  • Björklund, A., and Stenevi, U., 1981, In vivo evidence for a hippocampal adrenergic neurotrophic factor specifically released on septal deafferentation. Brain Res., 229:403.

    Article  Google Scholar 

  • Björklund, A., Stenevi, U., Schmidt, R.H., Dunnett, S.B. and Gage, F.H., 1983, Intracerebral grafting of neuronal cell suspensions. Acta Physiol. Scand., Suppl. 522.

    Google Scholar 

  • Brundin, P., Isacson, O., and Björklund, A., 1985, Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res, (in press).

    Google Scholar 

  • Bruyn, G.W., 1982, Neurotransmitters in Huntington’s Chorea — a clinician’s view. Prog. Brain Res., 55:445.

    Article  Google Scholar 

  • Chase, T.N., 1979, Rational approaches to the pharmacotherapy of chorea, in: “The basal ganglia”, M.D. Yahr, ed., Raven Press, New York.

    Google Scholar 

  • Coyle, J.T., and Schwarze, R., 1976, Lesions of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature, 263:244.

    Article  Google Scholar 

  • Coyle, J.T., and Schwarze, R., 1983, The use of excitatory amino acids as selective neurotoxins. in: “Handbook of Chemical Neuroanatomy”, Vol. 1, A. Björklund and T. Hökfelt, eds., Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • David, S., and Aguayo, A.J., 1981, Axonal elongation into PNS “bridges” after CNS injury in adult rats. Science, 214:931.

    Article  Google Scholar 

  • Dawbarn, D., Brundin, P., Isacson, O., Gage, F.H., Emson, P.C., and Björklund, A., 1985, Striatal transplants in ibotenic acid lesioned rats: survival of neurones and development of peptide immunoreactivity (submitted to J. Neurosci.).

    Google Scholar 

  • Deckel, A.W., Robinson, R.G., Coyle, J.R., and Sanberg, P.R., 1983, Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington’s disease by day 18 fetal striatal implants. Eur. J. Pharm., 93:287.

    Article  Google Scholar 

  • Dunnett, S.B., Björklund, A., Stenevi, U., and Iversen, S.D., 1981a, Behavioural recovery following transplantation of substantia nigra in rats subjected to 6–0HDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res., 215:147.

    Article  Google Scholar 

  • Dunnett, S.B., Björklund, A., Stenevi, U., and Iversen, S.D., 1981b, Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Res., 229:209.

    Article  Google Scholar 

  • Dunnett, S.B., and Iversen, S.D., 1981, Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav. Brain Res., 2:189.

    Article  Google Scholar 

  • Dunnett, S.B., Low, W.C., Iversen, S.D., Stenevi, U., and Björklund, A., 1982, Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res., 251:335.

    Article  Google Scholar 

  • Duvoisin, R.C., Chokroverty, S., Lepore, F., and Nicklas, W., 1983, Glutamate dehydrogenase deficiency in patients with olivopontocerebellar atrophy. Neurology, 33:1322.

    Article  Google Scholar 

  • Fonnum, F., 1975, A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem., 24:407.

    Article  Google Scholar 

  • Fonnum, F., Storra-Mathisen, J., and Walberg, F., 1970, Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res., 20:259.

    Article  Google Scholar 

  • Freed, W.J., Perlow, M.J., Karoum, F., Seiger, A., Olson, L., Hoffer, B.J., and Wyatt, R.J., 1980, Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioural, biochemical amd histochemical studies. Ann. Neurol., 8:510.

    Article  Google Scholar 

  • Gage, F.H., Björklund, A., and Stenevi, U., 1984, Denervation releases a neuronal survival factor in adult rat hippocampus. Nature, 308:637.

    Article  Google Scholar 

  • Gage, F.H., Dunnett, S.B., Björklund, A., and Stenevi, U., 1983, Aged rats: Recovery of motor coordination impairments by intrastriatal nigral grafts. Science, 221:966.

    Article  Google Scholar 

  • Gash, D., Sladek, J.R., and Sladek, C.D., 1980, Functional development of grafted vasopressin neurons. Science, 220:1367.

    Article  Google Scholar 

  • Glick, S.D., and Cox, R.D., 1978, Nocturnal rotation in normal rats: correlation with an amphetamine-induced rotation and effects of nigrostriatal lesions. Brain Res., 150:149.

    Article  Google Scholar 

  • Graybiel, A.M., and Ragsdale, C.W., 1983, Biochemical anatomy of the striatum. in: “Chemical neuroanatomy”, P.C. Emson, ed., Raven Press, New York.

    Google Scholar 

  • Isacson, O., Brundin, P., Dawbarn, D., Kelly, P.A.T., Gage, F.H., Emson, P.C., and Björklund, A., 1985b, Striatal grafts in the ibotenic acid lesioned striatum, in: “Neural grafting in the mammalian CNS”, A. Björklund and U. Stenevi, eds., Elsevier Biomedical Press, Amsterdam (in press).

    Google Scholar 

  • Isacson, O., Brundin, P., Kelly, P.A.T., Gage, F.H., and Björklund, A., 1984, Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Nature, 311:458.

    Article  Google Scholar 

  • Isacson, O., Brundin, P., Gage, F.H., and Björklund, A., 1985, Neural grafting in a rat model of Huntington’s disease: Progressive neurochemical changes after neostriatal ibotenate lesion and striatal tissue grafting (submitted to Neuroscience).

    Google Scholar 

  • Kelly, P.A.T., Graham, D.I., and McCulloch, J., 1982, Specific alterations in local cerebral glucose utilization following striatal lesions. Brain Res., 233:157.

    Article  Google Scholar 

  • Kelly, P.H., 1977, Drug-induced motor behaviour, in: “Handbook of Psycho-pharmacology”, Vol. 8, L.L. Iversen and S.D. Iversen, eds., Plenum Press, N.Y.

    Google Scholar 

  • Kelly, P.H., Seviour, S.D., and Iversen, S.D., 1975, Amphetamine and apo-morphine responses in the rat following 6–0HDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res., 94:507.

    Article  Google Scholar 

  • Kimura, H., McGeer, E.G., and McGeer, P.L., 1981, Metabolic alterations in an animal model of Huntington’s disease using the 14C-deoxyglucose methods. J. Neurol. Transmiss. Suppl., 16:103.

    Google Scholar 

  • Kitai, S.T., 1981, Electrophysiology of the corpus striatum and brain stem integrating systems. In: “Handbook of Physiology. Nervous System II, Motor Control”, V. Brooks, ed. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Krammer, E.B., 1980, Anterograde and transsynaptic degeneration ‘en cascade’ in basal ganglia introduced by intrastriatal injection of kainic acid: an animal analogue of Huntington’s disease. Brain Res., 1–96:209.

    Article  Google Scholar 

  • Krieger, D.T., Perlow, M.J., Gibson, M.J., Dames, T.F., Zimmerman, E.A., Ferin, M., and Charlton, H.M., 1982, Brain grafts reverse hypogonadism of gonadotropin releasing hormone deficency. Nature, 298:468.

    Article  Google Scholar 

  • Kromer, L.F., Björklund, A., and Stenevi, U., 1981, Regeneration of the septohippocampal pathway in adult rats is promoted by utilizing embryonic hippocampal implants as bridges. Brain Res., 210:173.

    Article  Google Scholar 

  • Kuhl, D.E., Metter, E.J., Riege, W.H., and Markham, Ch., 1984, Patterns of cerebral glucose utilization in Parkinson’s disease and Huntington’s disease. Ann. Neurol., 15:419.

    Article  Google Scholar 

  • Kuhl, D.E., Phelps, M., Markham, C., Winter, J., Metter, J., and Riege, W., 1981, Local cerebral glucose metabolism in Huntington’s disease determined by emission computed tomography of 18F flurorodeoxyglu-cose. Cerebral Blood Flow Metab., 1: Suppl. 1, 459.

    Google Scholar 

  • Labbe, R., Firl, A., Mufson, E.J., and Stein, D.G., 1983, Fetal brain transplants: reduction of cognitive deficits in rats with frontal cortex lesions. Science, 221:470.

    Article  Google Scholar 

  • Martinez, J.L., Petty, C., and Messing R.B., 1982, Regional brain uptake of 2-deoxy-D-glucose following training in a discriminated Y-maze avoidance task. J. Comp. Neurol. Physiol. Psychol. 96:721.

    Article  Google Scholar 

  • Mason, S.T., Fibiger, H.C., 1979, Kainic lesions of the striatum in rats mimic the spontaneous motor abnormalities of Huntington’s disease. Neuropharmacol., 18:403.

    Article  Google Scholar 

  • Matsunami, K., Kageyama, T., and Kubota, K., 1981, Radioactive 2-deoxy-D-glucose incorporation into the prefrontal and premotor cortex of the monkey performing a forelimb movement. Neurosci. Lett., 26:37.

    Article  Google Scholar 

  • Matsunami, K., and Kubota, K., 1983, Radioactive deoxyglucose uptake into the prefrontal cortex during a delayed response task of the monkey. Neurosci. Lett., 36:329.

    Article  Google Scholar 

  • McLoon, L.K., McLoon, S.C., and Lund, R.S., 1981, Cultured embryonic retinae transplanted to rat brain: Differentiation and formation of projections to host superior colliculus. Brain Res., 226:15.

    Article  Google Scholar 

  • Melamed, E., Hefti, F., and Bird, E.D., 1982, Huntington’s chorea is not associated with hyperactivity of nigrostriatal dopaminergic neurons: studies in post-mortem tissues and in rats with kainic acid lesions. Neurology, 32:640.

    Article  Google Scholar 

  • McCulloch, J., 1982, Mapping functional alterations in the CNS with (14C)-deoxyglucose. in: “Handbook of Psychopharmacology”, Vol. 15, L.L. Iversen, S.D. Iversen and S.H. Snyder, eds., Plenum Publishing Corp., New York.

    Google Scholar 

  • McGeer, E.G., and McGeer, P.L., 1976, Duplication of biochemical changes of Huntington’s chorea by intrastriatal injection of glutamic and kainic acids. Nature, 263:517.

    Article  Google Scholar 

  • Mogenson, G.J., and Nielsen, M.A., 1983, Evidence that an accumbens to subpallidal GABA-ergic projection contributes to locomotor activity. Brain Res. Bull., 11:309.

    Article  Google Scholar 

  • Olney, J.W., 1979, Excitotoxic amino acids and Huntington’s disease, in: “Advances in Neurology”, Vol. 23, Chase, Wexler, Barbeau, eds., Raven Press, N.Y.

    Google Scholar 

  • Perlow, M.J., Freed, W.J., Hoffer, B.J., Seiger, A., Olson, L., and Wyatt, R.J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 204:643.

    Article  Google Scholar 

  • Pisa, M., Sanberg, P.R., and Fibiger, H.C., 1981, Striatal injections of kainio acid selectively impair serial memory performance in the rat. Exp. Neurol., 74:633.

    Article  Google Scholar 

  • Plaitakis, A., Berl, S., and Yahr, M.D., 1982, Abnormal glutamate metabolism in an adult onset degenerative neurological disorder. Science, 216:193.

    Article  Google Scholar 

  • Sanberg, P.R., and Fibiger, H.C., 1979, Body weight, feeding and drinking behaviours in rats with kainic acid-induced lesions of striatal neurons -with a note on body weight symptomatology in Huntington’s disease. Exp. Neurol., 66:444.

    Article  Google Scholar 

  • Schwartzman, R.J., Greenberg, J., Revich, M., Klose, K.J., and Alexander, G.M., 1981, Functional metabolic mapping of a conditional motor task in primates utilizing 2-(14C) deoxyglucose. Exp. Neurol., 72:153.

    Article  Google Scholar 

  • Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem., 29:13.

    Article  Google Scholar 

  • Swanson, L.W., Mogenson, G.J., Gerfen, C.R., and Robinson, P., 1984, Evidence for a projection from the lateral preoptic area and substantia innorainata to the ‘mesencephalic locomotor region’ in the rat. Brain Res., 295:161.

    Article  Google Scholar 

  • Whittier, J.R., and Korenyi, C., 1968, Effect of oral fluphenazine on Huntington’s chorea. Int. J. Neuropsychiatr., 4:1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Isacson, O., Brundin, P., Gage, F.H., Björklund, A. (1985). Compensation of Lesion-Induced Changes in Cerebral Metabolism and Behaviour by Striatal Neural Implants in a Rat Model of Huntington’s Disease. In: Will, B.E., Schmitt, P., Dalrymple-Alford, J.C. (eds) Brain Plasticity, Learning, and Memory. Advances in Behavioral Biology, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5003-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5003-3_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5005-7

  • Online ISBN: 978-1-4684-5003-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics