Advertisement

Anatomical and Behavioral Studies Following Lesions on the Basal Magnocellular Nucleus in the Rat

  • Hervé Simon
  • Willy Mayo
  • Michel Le Moal
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)

Abstract

Increased life expectancy in the developed countries has highlighted the problems raised by both the normal and especially the pathological ageing processes of the brain. One problem in particular in terms of its socio-economic impact is represented by the senile dementia of the Alzheimer type (SDAT). It has been estimated that this disease represents the fourth or fifth main cause of death in the developed countries. The SDAT syndrome is characterized initially by temporo-spatial disturbances and impairment of recent memory followed by language disorders (aphasia), dysfunction of motor skill (apraxia) and perceptual difficulties (agnosia).

Keywords

Locomotor Activity Senile Dementia Radial Maze Neuritic Plaque Ibotenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartus, R.T., Dean, R.L., Beer, B., and Lippa, A.S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science, 217: 408.CrossRefGoogle Scholar
  2. Bowen, D.M., Smith, C.B., White, P., and Davidson, A.N., 1976, Neuro-transmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain, 99: 459.CrossRefGoogle Scholar
  3. Coyle, J.T., Price, D.L., and Delong, M.R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science, 219: 1184.CrossRefGoogle Scholar
  4. Davies, P., and Verth, A.H., 1978, Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s type dementia brains, Brain Res., 138: 395.Google Scholar
  5. Davis, P.E., and Mumford, S.J., 1984, Cued recall and the nature of the memory disorder in dementia, Brit. J. Psychiat., 144: 383.CrossRefGoogle Scholar
  6. Dubois, B., Mayo, W., Agid, Y., Le Moal, M., and Simon, H., 1985, Profound disturbances of spontaneous and learned behaviors following lesions of the nucleus basalis magnocellularis in the rat, Brain Res., in press.Google Scholar
  7. Flicker, C., Dean, R.L., Watkins, D.L., Fisher, S.K., and Bartus, R.T., 1983, Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat, Pharmacol. Biochem. Behav., 18: 973.CrossRefGoogle Scholar
  8. Friedman, E., Lerer, B., and Kuster, J., 1982, Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning, Pharmacol. Biochem. Behav., 19: 309.CrossRefGoogle Scholar
  9. Johnston, M.V., McKinney, M., and Coyle, J.T., 1979, Evidence for a cholinergic projection to neocortex from neurons in the basal forebrain, Proc. Nat. Acad. Sci., 76: 5392.CrossRefGoogle Scholar
  10. Lo Conte, G., Bartolini, L., Casamenti, F. and Marconcini-Pepeu, G., 1982, Lesions of cholinergic forebrain nuclei: changes in avoidance behavior and scopolamine actions. Pharmacol. Biochem. Behav., 17: 933.CrossRefGoogle Scholar
  11. Mayo, W., Dubois, B., Ploska, A., Javoy-Agid, F., Agid, Y., Le Moal, M., and Simon, H., 1984, Cortical cholinergic projections from the basal forebrain of the rat, with special reference to the prefrontal cortex innervation, Neurosci. Lett., 47: 149.CrossRefGoogle Scholar
  12. Olton, D.S., and Samuelson, R.J., 1976, Remembrance of places passed: spatial memory in rats, J. Exp. Psychol., 2: 97.Google Scholar
  13. Perry, E.K., Perry, R.H., Blessed, G., and Tomlinson, B.E., 1977, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet, 1: 189.CrossRefGoogle Scholar
  14. Perry, E.K., Tomlinson, B.E., Blessed, G., Bergmann, K., Gibson, P.H., and Perry, R.H., 1978, Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia, Br. Med. J., 2: 1457.CrossRefGoogle Scholar
  15. Pilleri, G., 1966, The Kluver-Bucy syndrome in man. A clinico-anatomical contribution to the function of the medial temporal lobe structures, Psychiat. Neurol., 152: 65.CrossRefGoogle Scholar
  16. Rossor, M.N., Emson, P.C., Mountjoy, C.Q., Roth, M. and Iversen, L.L., 1980, Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of the Alzheimer type, Neurosci. Lett., 20: 373.CrossRefGoogle Scholar
  17. Rossor, M.N., Svendson, C., Hunt, C.P., Mountjoy, C.Q., Roth, M. and Iversen, L.L. 1982, The substantia innominata in Alzheimer’s disease: an histochemical and biochemical study of cholinergic marker enzymes, Neurosci. Lett., 28: 217.CrossRefGoogle Scholar
  18. Salamone, J.D., Beart, P.M., Alpert, J.E., and Iversen, S.D., 1984, Impairment in T-maze reinforced alternation performance following nucleus basalis magnocellularis lesions in rats, Behav. Brain Res., 13: 63.CrossRefGoogle Scholar
  19. Sims, N.R., Bowen, D.M., Allen, S.J., Smith, C.C.T., Neary, D., Thomas, D.J., and Davison, A.N., 1983, Presynaptic cholinergic dysfunction in patients with dementia, J. Neurochem., 40: 503.CrossRefGoogle Scholar
  20. Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T., and Delong, M.R., 1981, Alzheimers disease: evidence for selective loss of cholinergic neurons in the nucleus basalis, Ann. Neurol., 10: 122.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Hervé Simon
    • 1
  • Willy Mayo
    • 1
  • Michel Le Moal
    • 1
  1. 1.Inserm U.259, Psychobiologie des Comportements AdaptatifsBordeaux CedexFrance

Personalised recommendations