Effects of Lysine-Vasopressin on Spontaneous Behavior and Learning In Appetitive Tasks in the Rat

  • Tatiana Alexinsky
  • Josette Alliot
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)


As a result of the demonstration by de Wied (1966) that pitressin, a neurohypophyseal extract, increased resistance to extinction of avoidance tasks in the rat, it was suggested that vasopressin may play an important role in memory processes. Several experimental findings have lent empirical support to this notion. The existing evidence can be summarized as follows:
  1. 1)

    Injections of vasopressin have been shown to alleviate memory impairments caused by different kinds of experimental or natural disruptive events such as hypophysectomy (de Wied, 1969, Bohus et al.,1975), lack of vasopressin release due to hereditary hypothalamic diabetes insipidus (Bohus et al., 1977) or the administration of amnestic agents such as puromycin (Walter et al., 1975), pentylenetetrazol (Bookin and Pfeifer, 1977), C02 or ECS (Rigter et al., 1974);

  2. 2)

    Post-training administration of vasopressin has been shown to facilitate retention of several aversive tasks (de Wied et al., 1984);

  3. 3)

    The inactivation of endogenous vasopressin by a specific anti-serum injected intraventricularly or intrahippocampally results in impaired avoidance performance (Van Wimmersma-Greidanus et al.,1976). Taken together, existing evidence is in support of a “mnemoactive” role of vasopressin (Gold and Zornetzer, 1983) and suggests that this peptide might have clinical applications in the treatment of amnesic syndroms in humans. However, Jolies (1983) has pointed out that an evaluation of clinical efficiency of vasopressin is difficult since both positive and negative results have been obtained.



Radial Maze Passive Avoidance Task Spontaneous Behavior Vasopressin Analogue Passive Avoidance Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexinsky, T., 1981, Analyse de l’évolution de la rétention “à court terme” par la méthode d’appariement retardé, in: “Mémoire, Conditionnement, Evolution”, Publ. de la Sorbonne, Paris.Google Scholar
  2. Alexinsky, T. and Chapouthier, G., 1978, A new behavioral model for studying delayed response in rats, Behav.Biol., 24:442.CrossRefGoogle Scholar
  3. Alliot, J. and Alexinsky, T., 1982, Effects of posttrial vasopressin injections on appetitively motivated learning in rats, Physiol. Behav., 28:525.CrossRefGoogle Scholar
  4. Alliot, J. and Alexinsky, T., 1983, Repeated posttrial administration of vasopressin impairs subsequent differential reinforcement of low rates (DRL) performances, Behav. Processes, 5: 345.CrossRefGoogle Scholar
  5. Andrews, O.S., Newton, B.A. and Shagal, A., 1983, The effects of vasopressin on positively rewarded responding and on locomotor activity in rats, Neuropeptides, 4:17.CrossRefGoogle Scholar
  6. Bohus, B., Gispen, W.H. and De Wied D., 1973, Effect of lysine-vasopressin and ACTH 4–10 on conditioned behavior of hypophysectomized rats, Neuroendocrinology, 11:137CrossRefGoogle Scholar
  7. Bohus, B., Van Wimmersma-Greidanus, T.J.B. and De Wied, D., 1975, Behavior and endocrine responses of rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain), Physiol. Behav., 14:609.CrossRefGoogle Scholar
  8. Bohus, B., 1977, Effect of desglycinamide-lysine vasopressin (DG-LVP) on sexually motivated T-maze behavior of the male rat, Norm. Behav., 8:52CrossRefGoogle Scholar
  9. Bookin, H.B. and Pfeifer, W.D., 1977, Effect of lysine vasopressin on pentylenetetrazol induced retrograde amnesia in rats, Pharmacol.Biochem.Behav., 7:277.CrossRefGoogle Scholar
  10. Buresova, O. and Skopkova, J., 1979, Vasopressin analogues and spatial short-term memory in rats, Peptides, 1:261.CrossRefGoogle Scholar
  11. Buresova, O. and Skopkova, J., 1982, Vasopressin analogues and spatial working memory in the 24-arm radial maze, Peptides, 3:725.CrossRefGoogle Scholar
  12. Carey, R.J. and Miller, M., 1982, Absence of learning and memory deficits in the vasopressin-deficient rat, (Brattleboro strain), Behav. Brain Res., 6:1.CrossRefGoogle Scholar
  13. Crine, A.F., 1981, Effect of vasopressin on open field behavior in rats, Physiol. psychol., 9:113.Google Scholar
  14. Dantzer, R., 1984, personal communication.Google Scholar
  15. De Wied, D., 1969, Effects of peptide hormones on behavior, in: “Frontiers in Neuro-endocrinology”, Ganong, W.F. and Martini, L., ed., Oxford University Press.Google Scholar
  16. De Wied, D., 1976, Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments, Life Sci., 19:685.CrossRefGoogle Scholar
  17. De Wied, D., Gaffori, O., Van Ree, J.M. and Dejong, W., 1984, Central target for the behavioral effects of vasopressin neuropeptides, Nature, 308:276.CrossRefGoogle Scholar
  18. De Wied, D. and Versteeg, D.H.G., 1979, Neurohypophyseal principles and memory, Fed. Process., 38:2348.Google Scholar
  19. Dorsa, D.M., and Van Ree, J.M., 1979, Modulation of substantia nigra self-stimulation by neuropeptides related to neurohypophyseal hormones, Brain Res.,172:367.CrossRefGoogle Scholar
  20. Ettenberg, A., Van Der Kooy, D., Le Moal, M., Koob, G.F. and Bloom, F.E., 1983, Can aversive properties of (peripherally-injected) vasopressin account for its putative role in memory?, Behav. Brain Res., 7:331.CrossRefGoogle Scholar
  21. Frucht-Celaru, M., Strerescu-Volanschi, M., 1975, The effect of lysine vasopressin on short-term recall of noxious significance, Rev. Roum. morph. embryol. physiol., 12:285.Google Scholar
  22. Gash, D.M. and Thomas, G.J., 1983, What is the importance of vasopressin in memory processes?, Trends Neurosci., 6:197.CrossRefGoogle Scholar
  23. Gash, D.M. and Thomas, G.J., 1984, Reply to D. De Wied, Trends Neurosci., 7:64.CrossRefGoogle Scholar
  24. Garrud, P., Gray, J.A. and De Wied, D., 1974, Pituitary-adrenal hormones and extinction of rewarded behavior in the rat, Physiol. Behav., 12:109.CrossRefGoogle Scholar
  25. Gold, P.E. and Zornetzer, S.F., 1983, The mnemon and its juices: neuromodulation of memory processes, Behav. Neural Biol., 38:151.CrossRefGoogle Scholar
  26. Hostetter, G. Bubb, S.L. and Kozlowsky, G.P., 1977, Vasopressin affects the behavior of rats in a positively-rewarded discrimination task, Life Sci., 21:1323.CrossRefGoogle Scholar
  27. Hostetter, G., Jubb, S.L. and Kozlowsky, G.P., 1980, An inability of subcutaneous vasopressin to affect passive avoidance behavior, Neuroendocrinology,30:174.CrossRefGoogle Scholar
  28. Jolies, J., 1983, Vasopressin-like peptides and the treatment of memory disorders in Man, in “The Neurohypophysis:structure, function and control”, Progress in Brain Research, 60:169.CrossRefGoogle Scholar
  29. Krejci, Y.B., Kupkova, B, Metys, J., Barth, T. and Jost, K., 1979, Vasopressin analogs:sedative properties and passive avoidance behavior in rats, Eur. J. Pharmacol., 56:347.CrossRefGoogle Scholar
  30. Meisenberg, G., 1981, Short term behavioral effect of posterior pituitary peptides in mice. Peptides, 2:1.CrossRefGoogle Scholar
  31. Messing, R.B. and Sparber, S.B., 1983, Facilitation of appetitively motivated learning and memory by desglycinamide arginine vasopressin (DG-AVP), J. Pharmacol., 89:43.Google Scholar
  32. Messing, R.B. and Sparber, S.B., 1984, Does vasopressin really facilitate memory processes? Trends Pharmacol. Sci., 5:149.CrossRefGoogle Scholar
  33. Miller, N.E., DiCara, L.V., and Wolf, G., 1968, Homeostasis and reward:T-maze learning induced by manipulating antidiuretic hormone, Amer.J.Physiol., 215:684.Google Scholar
  34. Olton, D.S., 1978, Characteristics of spatial memory, in: Cognitive processes in animal behavior, ed. S.H. Hulse, H. Fowler and W.H. Honig. Hillsdale, N.J.:Lawrence Erlbaum Associates..Google Scholar
  35. Rigter, H., Van Riezen, H. and De Wied, D., 1974, The effects of ACTH and vasopressin analogues in C02 induced retrograd amnesia in rats. Physiol. Behav., 13:381.CrossRefGoogle Scholar
  36. Sadile, A., Keith, A.B., Wright, C. and Edwardson, J.A., 1982, Failure of vasopressin to enhance memory in a passive avoidance task in rats, Neurosci. Letters,28:87.CrossRefGoogle Scholar
  37. Sahgal, A., 1983, Vasopressin and behavior, some arguments for an arousal hypothesis, in: “Neuropeptides and Psychosomatic Processes”, Endroczi, A., ed., Budapest.Google Scholar
  38. Sara, S.J., Barnett, J. and Toussaint, P., 1982, Vasopressin accelerates appetitive discrimination learning and impairs its reversal, Behav. Processes, 7:157.CrossRefGoogle Scholar
  39. Schulz, H., Kovacs, G.L. and Telegdy, G., 1974, Effect of physiological doses of vasopressin and oxytocin on avoidance and exploratory behavior in rats, Acta physiol.Acad. Sci. Hung., 45:211.Google Scholar
  40. Van Ree, J.M. and De Wied, D., 1977, Modulation of heroin self administration by neurohypophyseal principles, Eur.J. Pharmacol. 43:199.CrossRefGoogle Scholar
  41. Van Wimersma Greidanus, T.J.B. and De Wied, D., 1976, Dorsal hippocampus: a site of action of neuropeptide on avoidance behavior?, Pharmacol. Biochem. Behav., 5:29.CrossRefGoogle Scholar
  42. Walter, R., Hoffman, P.L., Flexner, J.B. and Flexner, L.B., 1975, Neurohypophyseal hormones, analogs and fragments, their effect on puromycin-induced amnesia, Proc. Nat. Acad. Sci., 72: 4180.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Tatiana Alexinsky
    • 1
  • Josette Alliot
    • 2
  1. 1.Département de PsychophysiologieLPN-CNRSGif-sur YvetteFrance
  2. 2.Laboratoire de PsychophysiologieUniversité Clermont IIAubièreFrance

Personalised recommendations