Advertisement

Phosphatidylcholine Transfer Protein: Model for Lipid-Protein Interactions and Probe for Membrane Research

  • Karel W. A. Wirtz
  • Anton J. W. G. Visser
  • Jos A. F. Op den Kamp
  • Ben Roelofsen
  • L. L. M. van Deenen
Part of the NATO ASI Series book series (NSSA, volume 91)

Abstract

Nature has provided for proteins that enable the constituent lipids to leave the physical constraints of the membrane structure. By their mode of action, these proteins facilitate in vitro the transfer of monomer lipid molecules between membranes. Lipid transferring proteins have been identified for phospholipids (for reviews, see Refs. 1 and 2), cholesterol3 and glycolipids4, 5. The physiological role of these proteins is still a matter of conjecture. In this regard, it is of interest that the transfer of ganglioside GM2 between membranes is facilitated by a specific protein, whose actual function is to present this ganglioside to hexosaminidase A as a water-soluble activator/lipid complex6.

Keywords

Electron Spin Resonance Outer Leaflet Rotational Correlation Time Exchangeable Pool Discoid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.W.A. Wirtz, in: “Lipid-Protein Interactions” (Jost, P.C. and Griffith, O.H., Eds.), Vol. 1, pp. 151–233, Wiley-Interscience, New York (1982).Google Scholar
  2. 2.
    J.C. Kader, D. Douady and P. Mazliak, in: “Phospholipids” (Hawthorne, J.N. and Ansell, G.B., Eds.3-, pp. 279–311. Elsevier Biomedical Press, Amsterdam (1982).Google Scholar
  3. 3.
    J.M. Trzaskos and J.L. Gaylor, Biochim. Biophys. Acta 751, 52–65 (1983).PubMedGoogle Scholar
  4. 4.
    R.J. Metz and N.S. Radin, J. Biol. Chem. 257, 12901–12907 (1982).PubMedGoogle Scholar
  5. 5.
    A. Abe, K. Yamada and T. Sasaki, Biochem. Biophys. Res. Commun. 104, 1386–1393 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Conzelmann, J. Burg, G. Stephan and K. Sandhoff, Eur. J. Biochem. 123, 455–464 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    H.H. Kamp, K.W.A. Wirtz and L.L.M. van Deenen, Biochim. Biophys. Acta 318, 313–325 (1973).CrossRefGoogle Scholar
  8. 8.
    B.J.H.M. Poorthuis, T.P. van der Krift, T. Teerlink, R. Akeroyd, K.Y. Hostetler and K.W.A. Wirtz, Biochim. Biophys. Acta 600, 376–386 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    G.M. Helmkamp, M.S. Harvey, K.W.A. Wirtz and L.L.M. van Deenen, J. Biol. Chem. 249, 6382–6389 (1974).PubMedGoogle Scholar
  10. 10.
    P.R. DiCorleto, J.B. Warach and D.B. Zilversmit, J. Biol. Chem. 254, 7795–7802 (1979).PubMedGoogle Scholar
  11. 11.
    R.J. Read and J.D. Funkhouser, Biochim. Biophys. Acta 752, 118126 (1983).Google Scholar
  12. 12.
    B. Bloj and D.B. Zilversmit, J. Biol. Chem. 252, 1613–1619 (1977).PubMedGoogle Scholar
  13. 13.
    R.C. Crain and D.B. Zilversmit, Biochemistry 19, 1433–1439 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    E.V. Dyatlovitskaya, N.G. Timofeeva and L.D. Bergelson, Eur. J. Biochem. 82, 463–471 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Douady, M. Grosbois, F. Guerbette and J.C. Kader, Piochim. Biophys. Acta 710, 143–153 (1982).Google Scholar
  16. 16.
    J.C. Kader, M. Julienne and C. Vergnolle, Eur. J. Biochem. 139, 411–416 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Daum and F. Paltauf, Biochim. Biophys. Acta 794, 385–391 (1984).Google Scholar
  18. 18.
    J. Westerman, H.H. Kamp and K.W.A. Wirtz, Methods Enzymol. 98, 581–586 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    H.H. Kamp, K.W.A. Wirtz, P.R. Baer, A.J. Slotboom, A.F. Rosenthal, F. Paltauf and L.L.M. van Deenen, Biochemistry 16, 1310–1316 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    R.A. Demel, K.W.A. Wirtz, H.H. Kamp, W.S.M. Geurts van Kessel and L.L.M. van Deenen, Nature New Biol. 246, 102–105 (1973).Google Scholar
  21. 21.
    K.W.A. Wirtz, P.F. Devaux and A. Bienvenue, Biochemistry 19, 3395–3399 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    J.W. Nichols and R.E. Pagano, J. Biol. Chem. 258, 5368–5371 (1983).PubMedGoogle Scholar
  23. 23.
    R. Akeroyd, L.G. Lange, J. Westerman and K.W.A. Wirtz, Eur. J. Biochem. 121, 77–81 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    L.G. Lange, J.F. Riordan and B.L. Vallee, Biochemistry 13, 4361–4370 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    F.J.M. Daemen and J.F. Riordan, Biochemistry 13, 2865–2871 (1974).Google Scholar
  26. 26.
    E. Morkin, I.L. Flink and S.K. Naberjee, J. Biol. Chem. 254, 12647–12652 (1979).PubMedGoogle Scholar
  27. 27.
    J.J. Schrijen, W.A.H.M. Luyben, J.J.H.H.M. De Pont and S.L. Bonting, Biochim. Biophys. Acta 597, 331–344 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Moonen, R. Akeroyd, J. Westerman, W.C. Puijk, P. Smits and K.W.A. Wirtz, Eur. J. Biochem. 106, 279–290 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Akeroyd, P. Moonen, W.C. Puijk and K.W.A. Wirtz, Eur. J. Biochem. 114, 385–391 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    G.D. Rose, Nature 272, 586–590 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    R. Akeroyd, J.A. Lenstra, J. Westerman, G. Vriend, K.W.A. Wirtz and L.L.M. van Deenen, Eur. J. Biochem. 121, 391–394 (1982).Google Scholar
  32. 32.
    M.J.R. Sternberg and J.M. Thornton, Nature 271, 15–20 (1978).Google Scholar
  33. 33.
    G.E. Schulz and R.H. Schirmer, in: “Principles of Protein Structure” ( Cantor, C.R., Ed.), pp. 66–165, Springer-Verlag, Heidelberg (1979).Google Scholar
  34. 34.
    M.I. Kanehisa and T.Y. Tsong, Biopolymers 19, 1617–1628 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    G.D. Rose and S. Roy, Proc. Natl. Acad. Sci. U.S.A. 77, 46434647 (1980).Google Scholar
  36. 36.
    K.W.A. Wirtz, T. Teerlink and R. Akeroyd, in: “Enzymes of Biological Membranes” (Martonosi, A.N., Ed.), Vol. 2, pp. 111138, Plenum Press, New York (1985).Google Scholar
  37. 37.
    T.A. Berkhout, A.J.W.G. Visser and K.W.A. Wirtz, Biochemistry 23, 1505–1513 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    L.A. Sklar, B.S. Hudson and R.D. Simoni, Biochemistry 16, 51005108 (1977).Google Scholar
  39. 39.
    L.A. Sklar, B.S. Hudson, M. Peterson and J. Diamond, Biochemistry 16, 813–819 (1977).PubMedCrossRefGoogle Scholar
  40. 40.
    P.K. Wolber and B.S. Hudson, Biochemistry 20, 2800–2810 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    A. van Hoek, J. Vervoort and A.J.W.G. Visser, J. Biochem. Biophys. Methods 7, 243–254 (1983).PubMedCrossRefGoogle Scholar
  42. 42.
    A.J.W.G. Visser and K.W.A. Wirtz, in: “Excited State Probes in Biochemistry and Biology” (Szabo, A.G. and Mazotti, L., Eds.), Plenum Press, New York, in press (1985).Google Scholar
  43. 43.
    P. Moonen, H.P. Haagsman, L.L.M. van Deenen and K.W.A. Wirtz, Eur. J. Biochem. 99, 439–445 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    J. Westerman, K.W.A. Wirtz, T. Berkhout, L.L.M. van Deenen, R. Radhakrishnan and H.G. Khorana, Eur. J. Biochem. 132, 441–449 (1983).PubMedCrossRefGoogle Scholar
  45. 45.
    L.W. Johnson and D.B. Zilversmit, Biochim. Biophys. Acta 375, 165–175 (1975).PubMedCrossRefGoogle Scholar
  46. 46.
    J.E. Rothman and E.A. Dawidowicz, Biochemistry 14, 2809–2816 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    B. de Kruijff and K.W,A.Wirtz, Biochim. Biophys. Acta 468,318–326 (1977).Google Scholar
  48. 48.
    B. de Kruijff, E.J.J. van Zoelen and L.L.M. van Deenen, Biochim. Biophys. Acta 509, 537–542 (1978).Google Scholar
  49. 49.
    G. van Meer, B.J.H.M. Poorthuis, K.W.A. Wirtz, J.A.F. Op den Kamp and L.L.M. van Deenen, Eur. J. Biochem. 103, 283–288 (1980).Google Scholar
  50. 50.
    A.J. Verkleij, R.F.A. Zwaal, B. Roelofsen, P. Comfurius, D. Kastelijn and L.L.M. van Deenen, Biochim. Biophys. Acta 323, 178–193 (1973).Google Scholar
  51. 51.
    W. Renooij, L.M.G. van Golde, R.F.A. Zwaal and L.L.M. van Deenen, Eur. J. Biochem. 61, 53–58 (1976).PubMedCrossRefGoogle Scholar
  52. 52.
    P.F.H. Franck, D.T.X. Chiu, J.A.F. Op den Kamp, B. Lubin, L.L.M. van Deenen and B. Roelofsen, J. Biol. Chem. 258, 84358442 (1983).Google Scholar
  53. 53.
    L.G. Lange, G. van Meer, J.A.F. Op den Kamp and L.L.M. van Deenen, Eur. J. Biochem. 110, 115–121 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    S.N. Mathur, I. Simon, B.R. Lokesh and A.A. Spector, Biochim. Biophys. Acta 751, 401–411 (1983).PubMedGoogle Scholar
  55. 55.
    P. North and S. Fleischer, Biochim. Biop ys. Acta 772, 65–76 (1984).CrossRefGoogle Scholar
  56. 56.
    F.A. Kuypers, B. Roelofsen, J.A.F. Op den Kamp and L.L.M. van Deenen, Biochim. Biophys. Acta 769, 337–347 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Karel W. A. Wirtz
    • 1
  • Anton J. W. G. Visser
    • 2
  • Jos A. F. Op den Kamp
    • 1
  • Ben Roelofsen
    • 1
  • L. L. M. van Deenen
    • 1
  1. 1.Laboratory of BiochemistryState University of UtrechtUtrechtThe Netherlands
  2. 2.Department of BiochemistryAgricultural UniversityWageningenThe Netherlands

Personalised recommendations