Advertisement

Muon Capture in Deuterium

  • M. Piccinini
Part of the Ettore Majorana International Science Series book series (EMISS, volume 23)

Abstract

The deuteron represents the simplest bound state of nucleons existing in nature. From the study of the weak nuclear capture process
$$\mu ^ - + d \to n + n + \upsilon _\mu$$
(1)
one can then hope to get information in two main directions. On one side, if the hadronic form factors in the weak Hamiltonian describing reaction (1) are known, then the deuteron wave function, the final state interaction between the produced neutrons and the meson exchange currents effects can be investigated[1–3]. On the other hand, assuming this information from other sources, one can determine the above-mentioned form factors obtaining similar or complementary information with respect to those obtained from the simplest nuclear muon capture by protons. In particular, due to the presence of two neutrons in the final state, the Pauli exclusion principle effect gives an opportunity of observing an almost pure Gamow-Teller coupling[4].

Keywords

Liquid Hydrogen Final State Interaction Muonic Atom Deuteron Wave Function Muon Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sotonadn E. Truhlik, Nucl.Phys., A229:471 (1974).ADSGoogle Scholar
  2. 2.
    F. Dautry, M. Rho, and D. O. Riska, Nucl.Phys., A264:507 (1976).ADSGoogle Scholar
  3. 3.
    E. Ivanov and E. Truhlik, Nucl.Phys., A316:451 (1979).ADSGoogle Scholar
  4. 4.
    H. Uberall and L. Wolfenstein, N.Cim., 10:136 (1958).CrossRefGoogle Scholar
  5. 5.
    E. Zavattini, in: “Muon Physics II,” V. W. Huges and C. S. Wu, eds., Academic Press (1975).Google Scholar
  6. 6.
    H. Primakoff, Rev. of Mod.Phys., 31:802 (1959).ADSMATHCrossRefGoogle Scholar
  7. 7.
    A. Bertin and A. Vitale, Pure leptonic weak processes in: “Fifty Years of Weak-Interactions Physics,” A. Bertin, R. A. Ricci and A. Vitale, eds. (1984).Google Scholar
  8. 8.
    I.-T. Wang, Phys.Rev., B139:1539 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    E. Truhlik, Nucl.Phys., B45:303 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    M. Sotona and E. Truhlik, Phys.Lett., 43B:362 (1973).ADSGoogle Scholar
  11. 11.
    Q. Ho-Kim, J. P. Lavine, and H. S. Picker, Phys.Rev., C13:1966 (1976).ADSGoogle Scholar
  12. 12.
    P. Pascual, R. Tarrach, and F. Vidal, N.Cim., A12:241 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    Nguyen Tien Nguyen, Nucl.Phys., A254:485 (1975).ADSGoogle Scholar
  14. 14.
    I.-T. Wang, E. W. Anderson, E. J. Bleser, L. M. Lederman, S. L. Meyer, J. L. Rosen, and J. E. Rothberg, Phys.Rev., B139:1528 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    A. Bertin, A. Vitale, A. Placci, and E. Zavattini, Phys.Rev., D8:3774 (1973).ADSGoogle Scholar
  16. 16.
    S. Cohen, D. L. Judd, and R. J. Riddell, Phys.Rev., 119:397 (1960)ADSCrossRefGoogle Scholar
  17. L. I. Ponomarev, L. N. Somov, and M. I. Faifman, Yad.Fiz., 29:133 (1979).Google Scholar
  18. (Sov.J.Nucl.Phys., 29:67 (1979)).Google Scholar
  19. 17.
    W. H. Bertl, W. H. Breunlich, P. Kammel, W. J. Kossler, H. G. Mahler, C. Petitjean, L. A. Schaller, L. Schellenberg, and H. Zmeskal, SIN Jahresbericht C27 (1979).Google Scholar
  20. 18.
    P. Kammel, W. H. Breunlich, M. Cargnelli, H. G. Mahler, J. Zmeskal, W. H. Berti, and C. Petitjean, Phys.Rev., A28:2611 (1983).ADSGoogle Scholar
  21. 19.
    W. H. Berti, W. H. Breunlich, P. Kammel, W. J. Kossler, H. G. Mahler, C. Petitjean, W. L. Reiter, L. A. Schaller, and L. Schellenberg, submitted to the Third Int. Conf. on Emerging Nuclear Energy Systems, Helsinki, Finland, June 6–9 (1983).Google Scholar
  22. 20.
    G. Bardin, J. Duclos, A. Magnon, J. Martino, A. Bertin, M. Capponi, M. Piccinini and A. Vitale, N.Cim.Lett., 36:79 (1983).CrossRefGoogle Scholar
  23. 21.
    S. S. Gershtein, Yu. V. Petrov, L. I. Ponomarev, L. N. Somov, and M. P. Faifman, Zh.Eksp.Teor.Fiz., 78:2099 (1980). (Sov. Phys.JETP, 51:1053 (1980)).ADSGoogle Scholar
  24. 22.
    B. P. Ad’yasevich, V. G. Antonenko, and V. N. Brasin, Yad.Fiz., 33:1167 (1981).Google Scholar
  25. (Sov.J.Nucl.Phys., 33:619 (1981))Google Scholar
  26. L. N. Bogdanova, V. E. Markushin, V. S. Melezhik, and L. I. Ponomarev, Phys.Lett., B115:171 (1982).ADSGoogle Scholar
  27. 23.
    D. V. Balin, A. A. Vorobyov, B. L. Gorskhov, A. I. Ilyin, E. M. Maev, A. A. Markov, V. I. Medvedev, V. V. Nebyubin, E. M. Oriscin, G. E. Petrov, L. B. Petrov, G. G. Semenchuk, Yu. V. Smirenin, and V. V. Sulimov, LINP preprint, 715 (1981); Gatchina Group, Submitted to the Third Int. Conf. on Emerging Nuclear Energy Systems, Helsinki, Finland, June 6–9 (1983).Google Scholar
  28. 24.
    O. A. Zaimidoroga, M. M. Kulyukin, B. Pontecorvo, S. M. Sulyaev, I. V. Falomkin, A. I. Filippov, V. M. Tsupko-Sitnikov, and Yu. A. Scherbakov, Phys.Lett., 6:100 (1963)ADSCrossRefGoogle Scholar
  29. L. B. Auerbach, R. J. Esterling, R. E. Hill, D. A. Jenkins, J. T. Lach, and N. H. Lipman, Phys.Rev., B138:127 (1965).ADSCrossRefGoogle Scholar
  30. 25.
    G. Bardin, J. Duclos, A. Magnon, J. Martino, A. Richter, E. Zavattini, A. Bertin, M. Piccinini, A. Vitale, and D. Measday, Nucl.Phya., A352:365 (1981).ADSCrossRefGoogle Scholar
  31. 26.
    G. Bardin, J. Duclos, A. Magnon, J. Martino, A. Richter, E. Zavattini, A. Bertin, M. Piccinini, and A. Vitale, Phys.Lett., B104:320 (1981).ADSGoogle Scholar
  32. 27.
    M. Adam, G. Bardin, B. Coudou, J. Duclos, A. Godin, P. Leconte, A. Magnon, J. Martino, M. Maurier, A. Mougeot, and D. Roux, Nucl. Instr. and Meth., 177:305 (1980).ADSCrossRefGoogle Scholar
  33. 28.
    see also J. Martino, Thèse d’Etat, 26 Avril 1982, Orsay n. 2567 and G. Bardin, Thèse d’Etat, 28 Octobre 1982, Orsay n. 2647.Google Scholar
  34. 29.
    G. Bardin, J. Duclos, A. Magnon, J. Martino, E. Zavattini, A. Bertin, M. Capponi, M. Piccinini, and A. Vitale, Phys.Lett., B137:135 (1984).ADSGoogle Scholar
  35. 30.
    K. L. Giovanetti, W. Dey, M. Eckhause, R. D. Hart, R. Hartmann, D. W. Hertzog, J. R. Kane, W. A. Orance, W. C. Phillips, R. T. Siegel, W. F. Vulcan, R. E. Welsh, and R. G. Winter, Phys.Rev., D29:343 (1984).ADSGoogle Scholar
  36. 31.
    H. Uberall, Phys.Rev., 119:365 (1960).ADSCrossRefGoogle Scholar
  37. 32.
    S. S. Gershtein and L. I. Ponomarev, in: “Muon Physics III,” V. W. Huges and C. S. Wu, eds., Academic Press (1975).Google Scholar
  38. 33.
    R. V. Reid, Ann. of Phys., 50:411 (1968).ADSCrossRefGoogle Scholar
  39. 34.
    J. P. Vary, Phys.Rev., C7:521 (1973)ADSGoogle Scholar
  40. M. I. Haftel and F. Tabakin, Phys.Rev., C3:921 (1971).ADSGoogle Scholar
  41. 35.
    M. Chemtob and M. Rho, Nucl.Phys., A163:1 (1971).ADSGoogle Scholar
  42. 36.
    E. Ivanov and E. Truhlih, Nucl.Phys., A316:437 (1979).ADSGoogle Scholar
  43. 37.
    A. Bertin, M. Capponi, I. Massa, M. Piccinini, G. Vannini, M. Poli, and A. Vitale, N.Cim., 72A:225 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Piccinini
    • 1
  1. 1.Istituto Nazionale de Fislca Nucleare, Sezione de Bologna and Dipartimento di FisicaUniversità di BolognaBolognaItaly

Personalised recommendations